
Graph Cross Supervised Learning via Generalized Knowledge
Xiangchi Yuan

Brandeis University

Waltham, MA, United States

xiangchiyuan@brandeis.edu

Yijun Tian

University of Notre Dame

South Bend, IN, United States

yijun.tian@nd.edu

Chunhui Zhang

Dartmouth College

Hanover, NH, United States

chunhui.zhang.gr@dartmouth.edu

Yanfang Ye

University of Notre Dame

South Bend, IN, United States

yye7@nd.edu

Nitesh V Chawla

University of Notre Dame

South Bend, IN, United States

nchawla@nd.edu

Chuxu Zhang

Brandeis University

Waltham, MA, United States

chuxuzhang@brandeis.edu

ABSTRACT
The success of GNNs highly relies on the accurate labeling of

data. Existing methods of ensuring accurate labels, such as weakly-

supervised learning, mainly focus on the existing nodes in the

graphs. However, in reality, new nodes always continuously emerge

on dynamic graphs, with different categories and even label noises.

To this end, we formulate a new problem, Graph Cross Supervised
Learning, or Graph Weak-Shot Learning, that describes the chal-

lenges of modeling new nodes with novel classes and potential

label noises. To solve this problem, we propose Lipshitz-regularized
Mixture-of-Experts similarity network (LIME), a novel framework

to encode new nodes and handle label noises. Specifically, we first

design a node similarity network to capture the knowledge from the

original classes, aiming to obtain insights for the emerging novel

classes. Then, to enhance the similarity network’s generalization

to new nodes that could have a distribution shift, we employ the

Mixture-of-Experts to increase the generalization of knowledge

learned by the similarity network. To further avoid losing general-

ization ability during training, we introduce the Lipschitz bound

to stabilize model output and alleviate the distribution shift issue.

Empirical experiments validate LIME’s effectiveness: we observe

a substantial enhancement of up to 11.34% in node classification

accuracy compared to the backbone model when subjected to the

challenges of label noise on novel classes across five benchmark

datasets.

KEYWORDS
Graph Cross Supervised Learning, Graph Weak-Shot Learning,

Mixture-of-Experts, Lipschitz Constant, Label Noise

ACM Reference Format:
Xiangchi Yuan, Yijun Tian, Chunhui Zhang, Yanfang Ye, Nitesh V Chawla,

and Chuxu Zhang. 2023. Graph Cross Supervised Learning via Generalized

Knowledge. In SIGKDD Conference 2024 in Spain, August 25 - 29, 2024. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’24, August 25 - 29, 2024, Barcelona
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Graph Neural Networks (GNNs) employ message-passing mech-

anisms to iteratively update node representations, allowing them

to aggregate information from neighboring nodes. This capabil-

ity makes GNNs particularly potent for modeling and learning

from graph-structured data. Consequently, GNNs have consistently

demonstrated state-of-the-art performance across various graph-

related tasks, such as node classification [8, 14, 31] and graph

classification [40, 41]. Furthermore, GNNs have proven to be no-

tably effective in real-world applications, including social network

analysis [21, 48], fraud detection [49], natural language process-

ing [5, 30, 42], and recommendation systems [4, 11, 43].

However, the successes of GNNs rely heavily on the precise

annotation of training data. If nodes are labeled with noise, the

model can be fooled, leading to inaccurate representations with

nodes belonging to different categories cross together. Considering

there are always new nodes with noisy or sparse labels added to the

graphs, encoding nodes on real-world web graphs such as social,

citation, and sales networks can be challenging. Therefore, many

graph weakly supervised learning methods are proposed to handle

label noise [3, 22, 28]. For example, NRGNN [3] and RTGNN [24]

are proposed to predict accurate pseudo-labels and distinguish

noisy labels from clean labels to provide supervision for the new

nodes with label noise. Nevertheless, these methods are limited to

handling new nodes that have pre-existing classes in the training

set. When there is a need to model the nodes with novel classes

and potential label noises, these methods can not fully utilize the

knowledge contained in the original graph and fail to perform well.

Although predicting new nodes that have existing classes can be

straightforward, it is challenging to learn and predict the new nodes

with classes that are distinct from existing node classes, especially

when these nodes have label noise. In light of this, we introduce a

new problem, i.e. Graph Cross Supervised (Weak-Shot) Learn-
ing, which corresponds to learning from existing nodes with correct

labels to deduce the true category of new nodes, while noises can

present for these new nodes. This problem is realistic and important

(detailed discussion on this bitter lesson is provided Appendix E):

experts can annotate nodes on small-scale graphs with high qual-

ity at the start, while it is unrealistic to continually annotate new

nodes with novel labels accurately when tons of these nodes contin-

uously emerge, considering limited annotation resources. Therefore,

it is common and natural to annotate nodes through cheap and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD ’24, August 25 - 29, 2024, Barcelona Xiangchi Yuan, Yijun Tian, Chunhui Zhang, Yanfang Ye, Nitesh V Chawla, and Chuxu Zhang

New Class Nodes
w/ Label Noise

Base Class Nodes
w/o Label Noise

New Class Nodes
w/o Label Noise

New Nodes Injection

Figure 1: Graph Cross Supervised Learning: in the original
graph, base class nodes with accurate labels; then new novel
class nodes with label noise emerge on the original graph.

easy-maintaining approaches like crowdsourcing and pseudo la-

bels by clustering, which bring label noise. To solve this problem,

we propose a novel framework called LIME (Lipshitz-regularized
Mixture-of-Experts similarity network). Specifically, we first obtain

the position features and concatenate them to node features. Then

the concatenated features of the original graph are used to train a

similarity network, which encodes the base class node without label

noise and generates similarity scores of node embedding pairs. Af-

ter that, the similarity network inferences on new class nodes with

potential label noises. For each node, the similarity scores between

it and the other nodes with the same label are averaged as its loss

weight during subsequent model training for node classification.

To generalize the similarity knowledge from training node pairs to

inference node pairs, we utilize the Mixture-of-Experts technique

to increase the generalization of the similarity network and intro-

duce the Lipshitz constant as loss regularization with theoretical

analysis. The major contributions of this paper are summarized as

follows:

• To the best of our knowledge, this work first proposes a new

realistic graph learning scenario calledGraphCross Supervised
Learning. According to our empirical studies in the experimental

section, most current works are ineffective in this setting because

they do not fully utilize existing labels of the base class nodes.

• To sovel the problem, we propose LIME model that utilizes a

similarity network to extract implicit knowledge for weighing

the training loss of new class nodes with label noises. To further

generalize this process, the Mixture-of-Experts module and the

corresponding Lipshitz bound are proposed.

• We build benchmark datasets and related dataset synthetic tools

for the new problem. Extensive experiments on the new datasets

demonstrate the effectiveness of our method. Results show that

LIME outperforms popular baselines and handles the graph cross

supervised learning scenario well against label noises.

2 RELATEDWORK
Graph Neural Networks (GNNs). GNNs have gained widespread
attention due to their ability to effectively learn non-Euclidean

data and achieve outstanding performance in various graph mining

tasks [1, 8, 29, 39]. Early works of GNNs such as graph convolutional

networks (GCN) are proposed to apply convolutional operations

on graph data [6, 14, 37]. Graph attention networks were intro-

duced to improve GCNs by incorporating attention mechanisms

to weight the importance of neighboring nodes during message

passing [31, 36]. In addition, graph recurrent neural networks have

been proposed to address the limitations of GNNs in handling

long-distance message passing on large graphs by incorporating

gating mechanisms inspired by recurrent neural networks [25].

To overcome the problem of oversmoothing, deeper GNNs were

constructed using skip connections to learn more comprehensive

representations [16–18]. While prior works have primarily focused

on improving standard accuracy, our method addresses the growing

concerns of label noise and novel node classes.

Graph Learning with Label Noise. Previous research [22, 47]has

shown that deep graph models are vulnerable to label noises, which

urges the need to design robust graph learning methods against

label noise. Among current methods that handle node label noise,

D-GNN [22] employs backward loss correction [23] to improve

performance. NRGNN [3] learns robust node representations with

noisy and sparse labels by connecting unlabeled nodes with labeled

nodes and further predicting accurate pseudo-labels to provide

supervision. Different from NRGNN which explicitly governs noisy

labels, RTGNN [24] distinguishes noisy labels from clean labels

and provides label correction to reduce the impact of label noises.

However, when there is the need to model new nodes with novel

classes and potential label noises, these methods do not utilize

knowledge contained by strongly labeled base class nodes in the

original graph to handle label noise with novel classes.

Cross Supervised (Weak-Shot) Learning . Cross Supervised

learning refers to learning novel categories with cheap weak labels,

with knowledge from a set of base categories that are already accu-

rately labeled. Machine learning and computer vision researchers

have explored similar settings (also named mixed-supervised learn-

ing or weak-shot learning) in different tasks, such as object detec-

tion [9, 19, 51], fine-grained classification [2], semantic segmenta-

tion [51], and instance segmentation [10, 15]. To the best of our

knowledge, we are the first to attempt to define cross supervised

learning on graphs.

3 PRELIMINARY
Problem Definition. Consider an undirected attributed graph

G = (V, E,X,Y), where V is the set of 𝑁 nodes, E is the set

of edges, X ∈ R𝑁×𝐷
denotes the set of node features with 𝐷

dimensions, and Y denotes node labels with K classes. The label

for these nodes with base classes is clean. After new nodes with

novel classes emerge on original graph, the graph becomes to

G′ = (V′, E′,X′,Y′). Note that Y′
has K′

classes with |K′ − K|
new classes annotated with noise, and the ground-truth set is

denoted as Y𝑇 . The objective is to learn a model 𝑓𝜃 to maximum

prediction accuracy in terms of the ground-truth label. The Graph

Cross Supervised Learning objective can be formulated as:

min

𝜃
L(𝑓𝜃 (G′),Y𝑇) . (1)

Sparse Mixture of Experts [26]. The Mixture-of-Experts (MoE)

ensembles multiple expert models to make predictions or perform

other tasks. The basic idea behind MoE is to divide the input space

into numerous partitions and assign different experts to different

partitions. Each expert is a specialized model that is trained to

perform well on a specific subset of the input space. The final

output is obtained by assembling the predictions of all the experts,

typically using a gating mechanism that determines the weight of

Graph Cross Supervised Learning via Generalized Knowledge KDD ’24, August 25 - 29, 2024, Barcelona

each expert based on the input. Formally, let ℎ be the input space

to the MoE, and E = {𝐸𝑖 (·)}𝑁𝑖=1 denotes that an MoE layer consists

of 𝑁 experts. The output of the MoE is given by:

𝑦 =

𝑁∑︁
𝑖=1

𝑝𝑖 (ℎ)𝐸𝑖 (ℎ), (2)

where 𝐸𝑖 is the 𝑖-th expert model, 𝑝𝑖 (ℎ) is the weight assigned to

the 𝑖-th expert for the input space ℎ. The weights are typically

obtained from a gating network, which is trained to assign higher

weights to experts that are more likely to make accurate predictions

for a given input space. A popular approach to design the gating

mechanism is to use a softmax function to calculate the weights

for gating, and to use neural networks as the expert models by

𝑝𝑖 (ℎ) =
exp(𝑡 (ℎ)𝑖)∑𝑁
𝑗=1 exp(𝑡 (ℎ) 𝑗)

, where 𝑡 (ℎ) is a linear transformation to

compute the logits of the experts given the input space ℎ, 𝑡 (ℎ)𝑖 is
the 𝑖-th value of the obtained logits, which is the weight for the

𝑖-th expert in the current layer. Previous graph MoE models are

designed to improve fairness [20] and robustness [44–46]. Different

from them, we utilize MoE to improve the generalization of node

pairs in this work.

Lipschitz Constant [12]. A function 𝑓 : R𝑛 → R𝑚 is established

to be Lipschitz continuous on an input set X ⊆ R𝑛 if there exists a

constant 𝐾 ≥ 0 such that for all 𝑥,𝑦 ∈ X, 𝑓 satisfies the following

inequality:

| |𝑓 (𝑥) − 𝑓 (𝑦) | | ≤ 𝐾 | |𝑥 − 𝑦 | |,∀𝑥,𝑦 ∈ X. (3)

The smallest possible 𝐾 in Equation (3) is the Lipschitz constant of

𝑓 , denoted as Lip(𝑓):

Lip(𝑓) = sup

𝑥,𝑦∈X,𝑥≠𝑦

| |𝑓 (𝑥) − 𝑓 (𝑦) | |
| |𝑥 − 𝑦 | | , (4)

and we say that 𝑓 is a 𝐾-Lipschitz function. Previous works such

as [32] propose to use Lipschitz bound as spectral norm regulariza-

tion to make the model more stable.

4 METHOD
This section presents our proposed LIME model to increase the

GNN performance when novel category data has label noise. Fig-

ure 2 illustrates the overall design of the model. LIME consists of

two training processes. First, a Mixture-of-Experts Similarity Net-

work (SimMoE) is introduced and trained on the original graph

to predict whether two nodes are similar or not in terms of their

labels. SimMoE consists of two key modules: Mixture-of-Experts

GNN encoder (GNNMoE) and Mixture-of-Experts MLP similarity

predictor (MLPMoE). The pipeline of SimMoE can be divided into

three steps: concatenating positional embedding, encoding node

features by GNNMoE, and predicting similarity scores by MLPMoE.

In addition, we further introduce the Lipshitz bound to regularize

the model to generalize learned knowledge and avoid overfitting.

Next, we utilize the trained SimMoE to infer the graph with new

nodes and calculate accumulated similarity scores between nodes

that have the same label. Since outlier nodes with noise labels are

dissimilar to the nodes with accurate labels, they have lower accu-

mulated similarity scores. Finally, the similarity scores are taken

as the weights of node losses to enforce model discard knowledge

from nodes with wrong labels during the training process. The

details of these steps are described in the following section.

4.1 Training the Mixture-of-Experts Similarity
Network on the Original Graph

SimMoE which contains GNNMoE and MLPMoE is used to predict

whether two nodes are similar or not. The illustration of SimMoE

is shown in part (a) of Figure 2. Specifically, input node features

of the original graph G are 𝑿 ∈ R𝑁×𝐷
, where 𝑁 is the number

of nodes and D is the feature dimension. 𝑿 are concatenated to

the positional features to obtain final node features 𝑿𝐹 ∈ R𝑁×𝐷 ′
,

where 𝐷′
is the final node feature dimension. Second, the GNNMoE

encodes features to embeddings 𝒁 ∈ R𝑁×𝐻
, where 𝐻 is the hidden

dimension. After that, we pair the node embeddings to obtain node

pair similarity features 𝑬 ∈ R𝑁𝑡×2𝐻
, where 𝑁𝑡 is the number of

similarity features. Finally, the node similarity features are used

to train the MLPMoE with binary similarity labels, i.e., “similar"

(two nodes have the same label) and “dissimilar" (two nodes have

different labels).

Concatenating Positional Embeddings. To comprehensively

learn the positional information of the subgraph, we propose to

extend node features by obtaining positional embeddings from

unsupervised positional learning methods such as Node2Vec [7].

Specifically, the Node2Vec model learns the positional information

from the adjacency matrix 𝑨, and the learned embeddings 𝑿𝑃 of

nodes is concatenated to original node features 𝑿 to obtain final

node features 𝑿𝐹 . This process can be formulated as:

𝑿𝑃 = Node2Vec(𝑨),𝑿𝐹 = CONCAT(𝑿𝑃 ,𝑿) . (5)

Encoding Node Features by GNNMoE. When we employ the

SimMoE to infer the new graph with injected new nodes, there

exists a distribution shift since the model is trained on the original

graph with base classes. To improve the generalization of knowl-

edge learned by SimMoE under this condition, we incorporate the

MoE techniques in SimMoE to learn diverse representations. Sim-

MoE learns rich representations from diverse experts and during

the inference, the gate network distributes each input feature to

their most suitable expert with the best generalization to the cor-

responding input. Specifically, we divide FC-layer Linear(·) into
multiple expert networks to process the target representation ℎ.

The process is formulated as follows:

LinMoE(ℎ) =
∑︁
𝑖∈T

𝑝𝑖 (ℎ) · Linear𝑖 (ℎ), (6)

whereT represents the set of activated top-𝑘 expert indices. LinMoE(·)
combines the output of multiple expert networks. In particular, the

top-𝑘 activated expert indices are determined by the gate-value

𝑝𝑖 (ℎ𝑣), which can be obtained using a softmax function:

𝑝𝑖 (ℎ) =
exp(𝑡 (ℎ)𝑖 + 𝜀𝑖)∑𝑁𝐸

𝑘=1
exp(𝑡 (ℎ)𝑘 + 𝜀𝑘)

, (7)

where 𝑡 (·) is a linear transformation, and 𝑁𝐸 is the number of all

experts. The activated expert indices in the LinMoE module are

determined by a gate-value 𝑝𝑖 (ℎ). To illustrate, 𝑝𝑖 (ℎ) takes the
logits of all experts, obtained through a linear transformation of

the input feature vector ℎ, and computes the activation probability

of each expert. The logits are weighted by the 𝑖-th value 𝑡 (ℎ)𝑖 of

KDD ’24, August 25 - 29, 2024, Barcelona Xiangchi Yuan, Yijun Tian, Chunhui Zhang, Yanfang Ye, Nitesh V Chawla, and Chuxu Zhang

1 0 1

0 1 0

1 0 0

x Σ

Loss of
each nodes

Total
 loss

Original graph

New graph w. new nodes

Adjacency matrix

Node features

Positional features Learned
embeddings Select node pairs to

construct similarity
features

Gating

Expert 1

Expert 2

Expert M

…

x

x

Σ

N layers

Similarity
scores

Adjacency matrix

Node features

1 0 1 0

0 1 0 1

1 0 0 0

0 1 0 1

GNN
SimMoE

inference
Positional features

Similarity
scores
matrix

Accumulated
similarity
scores for
each node New class nodes w/o label noise

Base class nodes w/o label noise

New class nodes w/ label noise

Lipschitz bound
regularization

(a) Train SimMoE

(b) Train GNN

MLPMoE

Gating

Expert 1

Expert 2

Expert M

…

x

x

Σ

N layers

GNNMoE

x

Similarity
scores

Figure 2: Our framework. (a) First, SimMoE which contains GNNMoE and MLPMoE is trained on the original graph. SimMoE
is trained to predict whether two nodes are similar or not in terms of their labels. The pipeline of SimMoE can be divided
into three steps: concatenating position embedding, encoding node features by GNNMoE, and predicting similarity scores by
MLPMoE. (b) Second, GNN is trained for classification with the support of weighted loss. We utilize the trained SimMoE to
infer the graph injected by new nodes and calculate accumulated similarity scores for each node, where lower scores indicate
wrong labels. Finally, the similarity scores are taken as the weight of node losses to enforce model discard knowledge from
nodes with wrong labels during the training process.

the linear transformation, and a random noise term 𝜀𝑖 is added to

ensure randomness in the expert activating procedure. 𝜀𝑖 is typically

chosen to be a sample from a Gaussian distribution. Each layer of

the GNNMoE encoder first transforms the features of the target

node and its neighboring nodes using the LinMoE
(𝑙) (·) and then

aggregates the transformed features of the neighboring nodes using

AGG(·), which can be formulated as follows:

ℎ
(𝑙)
𝑣 =COMB

(𝑙)
(
LinMoE

(𝑙) (ℎ (𝑙−1)𝑣),

AGG

({
LinMoE

(𝑙) (ℎ (𝑙−1)𝑢),∀𝑢 ∈ 𝑁𝑣
}))

,

(8)

where AGG(·) and COMB(·) represent the neighbor aggregation
and combination functions, respectively. 𝑁𝑣 denotes the set of

neighboring nodes of node 𝑣 , and ℎ
(𝑙−1)
𝑣 is the node representation

at the 𝑙-th layer.

Predicting Similarity Scores by MLPMoE. After obtaining node
embeddings 𝒁 (the output of the last layer of GNNMoE), we pair

node embeddings to form node similarity features 𝑬 . To decrease

the complexity, 𝑬 are constructed by randomly concatenating two

node embeddings, which is a random sampling process to sample

𝑁𝑡 node pairs from total 𝑁 2
node pairs. We also discuss different

sampling strategies in Appendix D.4. MLPMoE takes 𝑬 as the input

to output similarity scores for each node pair. Same with GNNMoE,

we need to improve the generalization of the similarity predictor

when we employ the SimMoE to infer the new graph. Therefore,

we incorporate LinMoE to formulate MLPMoE, which updates the

node pair similarity representation 𝑬 (𝑙)
in layer 𝑙 as follows:

𝑬 (𝑙) = LinMoE(𝑬 (𝑙−1)) . (9)

Although the MLPMoE improves the generalization, as the training

process iterates, the model still gradually overfits the training data

while losing generalization. To solve this problem, we further intro-

duce the Lipschitz bound to gain better generalization by stabilizing

the output of the MLPMoE when the distribution shift happens

during model inference. Here we first analyze MLPMoE and give

its theoretical Lipschitz bound, then utilize it to regularize the train-

ing process. Specifically, consider MLPMoE to be represented as

𝑓 : 𝑬 ∈ R𝑁𝑡×𝐹 in → 𝒀 ∈ R𝑁𝑡×𝐹 out
, where 𝑬 is the input feature

matrix, 𝒀 is the output matrix, and 𝑁𝑡 is the number of similarity

features. To analyze the stability of the model output, we examine

the Lipschitz bound of the Jacobian matrix of MLPMoE by intro-

ducing the following lemma and proposition. The detailed proofs

are provided in Appendix A.

Graph Cross Supervised Learning via Generalized Knowledge KDD ’24, August 25 - 29, 2024, Barcelona

Lemma 4.1. Let 𝑔 be a Lipschitz continuous function. Denote 𝑔𝑖
to be the 𝑖-th layer of 𝑔, 𝑖 = 1, · · · ,𝑚. Then the Lipschitz constant of
function 𝑔 satisfies:

Lip(𝑔) ≤

[Lip(𝑔𝑖)]𝑚𝑖=1

 , (10)

where [Lip(𝑔𝑖)]𝑚𝑖=1 denotes the𝑚-dimensional vector whose 𝑖-th com-
ponent is Lip(𝑔𝑖).

Lemma 4.1 establishes the connection between the Lipschitz con-

stant of the entire model and those of its constituent subnetworks

in a cascaded arrangement. Based on Lemma 4.1, we present the

following proposition:

Proposition 4.2. Let 𝒀 be the output of an 𝐿-layer MLPMoE
(represented in 𝑓 (·)) with 𝑬 as the input. Assuming the activation
function (represented in 𝜌 (·)) is ReLU with a Lipschitz constant of
Lip(𝜌) = 1, then the global Lipschitz constant of the Mixture-of-
Experts network, denoted as Lip(𝑓), satisfies the following inequality:

Lip(𝑓) ⩽ max

𝑗

𝐿∏
𝑙=1

𝐹 𝑙

[∑𝐾𝑙

𝑘=1
𝑝𝑘
𝑙
J𝑘 (ℎ𝑙)

]
𝑗

∞
, (11)

where 𝐹 𝑙 represents the output dimension of the 𝑙-th Mixture-of-
Experts layer which contains 𝐾𝑙 experts; 𝑗 is the index of the node;
𝑘 is the index of the expert in the 𝑙-th layer; 𝑝𝑘

𝑙
is the gate value for

𝑘-th expert in the 𝑙-th layer and the vector
[
J𝑘 (ℎ𝑙)

]
is as follows:[

J𝑘 (ℎ𝑙)
]
=

[

𝑱𝑘
1
(ℎ𝑙)

 ,

𝑱𝑘
2
(ℎ𝑙)

 , · · · ,

𝑱𝑘
𝐹 𝑙
(ℎ𝑙)

] . (12)

Notably, 𝑱𝑘
𝑖
(ℎ𝑙) denotes the input and output of the 𝑖-th row of the

Jacobian matrix of the 𝑘-th expert in the 𝑙-th layer.

Proposition 4.2 provides a method to estimate the Lipschitz con-

stants Lip(𝑓) of similarity network 𝑓 (·) by estimating Lipschitz

constants of subnetworks. However, it is challenging to consider

the potential cumulative effect in the similarity network. There-

fore, we consider MLPMoE as a unitary model and directly de-

rive the Lipschitz bound from the input and output of MLPMoE.

To achieve this, we define the Jacobian matrix of 𝑖-th nodes pair

similarity feature as [𝑱𝑖]𝐹 out×𝐹 in =

[
𝑱⊤
𝑖1
, 𝑱⊤
𝑖2
, · · · , 𝑱⊤

𝑖𝐹 out

]⊤
, where

𝑱𝑖 𝑗 =
[
𝜕𝒀𝑖 𝑗
𝜕𝑬𝑖1

,
𝜕𝒀𝑖 𝑗
𝜕𝑬𝑖2

, · · · , 𝜕𝒀𝑖 𝑗
𝜕𝑬

𝑖𝐹 in

]⊤
. Then we define J as follows:

J =
[
J⊤
1
,J⊤

2
, · · · ,J⊤

𝑁

]⊤
, (13)

where J𝑖 = [∥𝑱𝑖1∥ , ∥𝑱𝑖2∥ , · · · , ∥𝑱𝑖𝐹 out ∥]⊤. According to the defini-

tion of J , we take the 𝑙2-𝑛𝑜𝑟𝑚 for each row of J and then take

the infinite norm for the entire J to obtain the Lipschitz bound of

the whole MLPMoE, which is formulated as follows:

Lip(𝑓) = ∥J ∥∞,2 . (14)

During the training, the Lipschitz bound for the model output

is computed using the gradients and norms of the input node pair

features. We utilize this Lipschitz bound as a regularization term

in the loss function, ensuring that the model’s output stays within

the defined constraints when we generalize the MLPMoE for in-

ference. Equation (14) provides a strict Lipschitz bound from a

theoretical perspective, and in our empirical implementation, we

multiply a factor
𝐿𝑖𝑝 (𝐸𝑚𝑖𝑛)

1

𝑁

∑𝑁
1
𝐿𝑖𝑝 (𝐸𝑖)

to this Lipschitz bound to "tighten"

it, where 𝐿𝑖𝑝 (𝐸𝑚𝑖𝑛) denotes the minimal expert’s Lipschitz bound,

and 𝐿𝑖𝑝 (𝐸𝑖) denotes Lipschitz bound for 𝑖-th expert. In MoE, ex-

perts are different from each other because of different initialization

and dispatched nodes, but the overall distributions of dispatched

nodes to each expert are similar. Therefore, in this factor, we greed-

ily chase the possible smallest Lipschitz bound (𝐿𝑖𝑝 (𝐸𝑚𝑖𝑛) part),
while tracing the overall Lipschitz bound (

1

𝑁

∑𝑁
1
𝐿𝑖𝑝 (𝐸𝑖) part) of

MLPMoE. The final loss for training SimMoE can be formulated as:

L𝑠𝑖𝑚 = L𝑠 + 𝐿𝑖𝑝 (𝐸𝑚𝑖𝑛)
1

𝑁

∑𝑁
1
𝐿𝑖𝑝 (𝐸𝑖)

Lip(𝑓), (15)

where L𝑠 is the training loss supervised by labels for similarity

features (The label of the similarity feature is similar/dissimilar if

two nodes have the same/different labels).

4.2 Training GNN on the New Graph with
Weighted Node Classification Loss

After SimMoE is trained, we employ the SimMoE to infer the graph

G′ = (V′, E′,X′) which is associated with new nodes to obtain

similarity scores. Note that during inference, the process of forming

similarity features is different from training. Specifically, for nodes

V′
with |C| class, we randomly sample 𝑁𝑖 nodes from each class

to form the nodes set V′
𝑠 , where |V′

𝑠 | = 𝑁𝑖 |C|. Then, we pair each
node fromV′

to each node fromV′
𝑠 to construct similarity features.

Finally, we take the output of similarity scores and construct a

similarity scores matrix 𝑺 ∈ R𝑁×𝑁𝑖
. The element 𝑺𝑖, 𝑗 represents

the similarity score between the node 𝑣 ′ ∈ V′
and node 𝑣 ′𝑠 ∈ V′

𝑠

that has the same label with 𝑣 ′
𝑖
. Finally, we calculate the accumulated

similarity score 𝑤𝑣′ =
1

𝑐

∑𝑐
𝑗=1 𝑺𝑣′,𝑣′𝑠 for the node 𝑣 ′, where 𝑤𝑣′ is

the weight for downstream GNN classification training loss for

node 𝑣 ′ and 𝑗 represents 𝑗-th sampled node with the same labels as

node 𝑣 ′. Formally, this process can be formulated as follows:

L =
1

|V′ |
∑︁
𝑣′∈V′

−𝑤𝑖𝑦′𝑣′ log[𝑓 (𝑥𝑣′)], (16)

where 𝑦′
𝑣′ is the label for node 𝑣

′
. Since we calculate the accumu-

lated similarity scores between the nodes with the same label, the

outlier and minority nodes that do not belong to their labeled class

have lower accumulated similarity scores (weights). Lower weights

indicate the wrong annotations, and accordingly, these nodes con-

tribute less to learning the GNN classifier. This helps GNN avoid

being fooled by noise labels during the training process.

5 EXPERIMENTS
This section presents comprehensive experiments to evaluate the

effectiveness of our method when training on nodes with novel

and noise labels. The experiments aim to address the following

key research questions: RQ-1: Can our method outperform other

state-of-the-art (SOTA) methods in terms of graph cross super-

vised learning? RQ-2: What is the contribution of each component

w.r.t. robustness against noise labels? RQ-3: How does our method

generalize similarity when data is out-of-distribution? RQ-4: How
similarity scores enhance representations learning on the graph?

KDD ’24, August 25 - 29, 2024, Barcelona Xiangchi Yuan, Yijun Tian, Chunhui Zhang, Yanfang Ye, Nitesh V Chawla, and Chuxu Zhang

Table 1: Node classification accuracy performance comparison of different methods. N.R. denotes label noise rate on novel
classes and w.o. represents no label noise. The best result is bolded and the runner-up is underlined.

Dataset N.R. GCN [14] CP-GNN [47] NRGNN [3] RTGNN [24] GPPT [27] JacGCN [38] SimTrans [2] LIME

w.o. 86.83 ± 0.38 86.72 ± 0.31 87.64 ± 0.40 85.61 ± 0.31 86.72 ± 0.33 85.20 ± 0.38 86.79 ± 0.22 88.34 ± 0.32
0.1 82.47 ± 0.55 83.47 ± 0.72 84.13 ± 0.48 84.94 ± 0.62 83.32 ± 0.36 83.32 ± 0.45 84.24 ± 0.43 86.94 ± 0.24Cora
0.3 77.86 ± 0.35 78.04 ± 0.69 79.23 ± 0.48 82.95 ± 0.57 81.70 ± 0.51 79.00 ± 0.38 81.85 ± 0.40 88.23 ± 0.44

w.o. 73.80 ± 0.32 70.92 ± 0.40 71.70 ± 0.15 72.66 ± 0.65 73.56 ± 0.42 72.75 ± 0.36 72.54 ± 0.28 75.82 ± 0.33
0.1 67.58 ± 0.76 70.68 ± 0.71 71.40 ± 0.26 72.00 ± 0.33 69.59 ± 0.56 67.73 ± 0.61 69.92 ± 0.32 75.28 ± 0.70CiteSeer
0.3 62.98 ± 0.57 64.66 ± 0.39 63.64 ± 0.64 67.91 ± 0.57 66.38 ± 0.61 65.83 ± 0.77 67.43 ± 1.10 74.32 ± 0.32

w.o. 94.89 ± 0.08 93.70 ± 0.88 93.91 ± 0.19 92.84 ± 0.19 92.54 ± 0.34 91.33 ± 0.46 93.07 ± 0.19 94.51 ± 0.18

0.1 91.29 ± 1.36 92.82 ± 0.20 92.67 ± 1.06 90.95 ± 0.46 92.75 ± 0.26 92.25 ± 3.22 92.58 ± 0.77 93.25 ± 0.24A-Photo
0.3 87.99 ± 2.40 87.87 ± 4.77 92.60 ± 1.27 91.96 ± 0.74 91.03 ± 0.47 90.39 ± 3.53 90.48 ± 0.23 93.79 ± 0.28

w.o. 89.83 ± 3.33 88.95 ± 0.40 87.84 ± 1.08 88.20 ± 1.30 90.33 ± 0.62 88.21 ± 1.04 87.61 ± 0.71 90.28 ± 1.08
0.1 85.91 ± 3.92 88.62 ± 2.14 86.51 ± 0.66 86.04 ± 3.26 88.00 ± 2.94 87.27 ± 2.36 85.91 ± 3.92 89.45 ± 0.21A-Computer
0.3 80.44 ± 7.31 79.13 ± 5.54 83.64 ± 1.04 83.46 ± 2.81 85.83 ± 6.37 84.92 ± 5.85 83.37 ± 5.00 89.13 ± 1.22

w.o. 26.09 ± 0.73 26.67 ± 0.51 26.87 ± 0.41 26.95 ± 0.63 26.95 ± 0.63 26.97 ± 0.34 27.33 ± 0.44 29.17 ± 0.51
0.1 25.45 ± 0.46 26.37 ± 0.52 26.12 ± 0.31 25.25 ± 0.37 27.13 ± 0.30 27.12 ± 0.68 26.88 ± 0.14 29.68 ± 0.34Actor
0.3 25.22 ± 0.65 25.86 ± 0.26 25.70 ± 0.35 25.96 ± 0.46 26.75 ± 0.47 25.80 ± 0.77 26.71 ± 0.59 29.68 ± 0.24

w.o. 47.20 ± 2.40 43.60 ± 1.96 40.40 ± 1.96 44.80 ± 2.04 44.40 ± 2.65 43.20 ± 2.04 46.40 ± 2.65 48.40 ± 2.65
0.1 34.00 ± 1.26 37.60 ± 1.50 36.00 ± 2.19 38.80 ± 0.98 35.20 ± 1.60 36.40 ± 1.96 37.60 ± 1.50 44.00 ± 2.83Wisconsin
0.3 27.60 ± 1.96 33.60 ± 1.96 27.20 ± 1.60 35.60 ± 3.67 35.60 ± 3.44 26.40 ± 4.08 31.20 ± 2.40 38.80 ± 2.40

5.1 Setup
Datasets. We use six widely used PyG benchmark datasets with

different graph types, i.e., Cora, CiteSeer, A-Computers, A-Photo,
Actor, and Wisconsin, to evaluate our method. In the experiments,

we randomly split datasets into 80% for training, 10% for validation,

and 10% for testing. To evaluate the performance of LIME on large

graphs, we use Flickr, Reddit, and AMiner datasets with default

splits from GRB [50] benchmark datasets. The statistics of datasets

used in the experiments are listed in Appendix B.

Baselines. We compare our method with five types of baselines.

First, we compare the general GNN model GCN [14]. Second, we

compare popular graph weakly supervised learning methods, in-

cluding CP-GNN [47], NRGNN [3], RTGNN [24]. Third, we consider

the graph prompt learning method GPPT [27]. Fourth, we com-

pare popularly graph few-shot learning methods GLITTER [33],

TENT [34], and COSMIC [35]. Note that graph few-shot learning

methods have worse performances and scalability issues compared

with other baselines, we present their results in Appendix B.4. Fi-

nally, we adapt the cross supervised learning method SimTrans [2]

for computer vision task to graphs. We also adapt Jaccard-GCN [38]

to our setting by calculating Jaccard similarity scores to replace

end-to-end similarity calculation in LIME.

Evaluation Setting. To adapt these datasets to our graph cross

learning setting, we construct two graphs from each original graph

by categories. We split the original category set C to half (
⌈ | C | ⌉
2

)

base category set C𝑏 and half (
⌊ | C | ⌋
2

) novel category set C𝑛 , where
C𝑏 ∪ C𝑛 = C and C𝑏 ∩ C𝑛 = ∅. After that, we construct the graph
with label noise rate 𝑟 ∈ {0, 0.1, 0.3} for training. The rate 𝑟 is for-
mally defined as the probability of a new training node 𝑣 having

another label among novel categories. Finally, we train our method

and baselines on the constructed graph with label noises. We eval-

uate node classification accuracy according to the test set with the

ground-truth labels.

5.2 Performance Comparison
To answer the first research question RQ-1, we evaluate the graph
cross supervised performance of LIME and compare it with other

SOTA baselines. The results are reported in Table 1. According to

the table, we can observe that LIME comprehensively outperforms

other baselines under 3 different label noise rates (w.o. noise, noise

rate 0.1, and noise rate 0.2) across six graph datasets. Specifically,

when nodes with novel class have label noise, LIME demonstrates

impressive robust accuracy under two different label noise rates

across all the datasets, while other baseline methods experience a

severe decrease in accuracy as the label noise rate increases. For

instance, on the Cora and CiteSeer datasets, LIME outperforms the

most competitive baseline RTGNN by 2.00% and 3.28% when the

label noise rate is 0.1, respectively. LIME outperforms RTGNN by

5.28% on Cora and 6.41% on CiteSeer when the label noise rate

increases to 0.3. On the Amazon dataset, compared to the most

competitive baselines, LIME outperforms the runner-up baselines

by 3.53% when the label noise rate is 0.1 and by 0.43% when the label

noise rate increases to 0.3 on the Photo dataset. On the Computer

dataset, our method outperforms the runner-up baselines by 0.83%

when the label noise rate is 0.1 and by 3.30% when the label noise

rate increases to 0.3. On the Actor dataset, LIME outperforms the

most competitive baseline GPPT by 2.55% when the label noise rate

is 0.1 and by 2.93% when the label noise rate increases 0.3. On the

Wisconsin dataset, our method outperforms the runner-up baseline

RTGNN by 5.20% when the label noise rate is 0.1 and by 3.30%

when the label noise rate increases 0.3. In addition, our LIME also

Graph Cross Supervised Learning via Generalized Knowledge KDD ’24, August 25 - 29, 2024, Barcelona

demonstrates strong representation ability on clean graphs without

label noise and outperforms other baselines. This observation indi-

cates that our model discriminates many outlier nodes and assigns

them lower loss weight during training, which helps the model

concentrate on learning representations from nodes with better

quality. In summary, the above results showcase the effectiveness of

LIME against label noise against different noise rates on the graph

datasets, facilitated by our Lipschitz bounded Mixture-of-Experts

similarity network.

5.3 Scale to Large Graphs
In the realm of graph learning, handling large-scale graphs effi-

ciently remains a formidable challenge due to the complexity and

size of real-world networks. While Section 1 reviews several graph

learning baselines designed to mitigate label noise, prominent meth-

ods such as CP-GNN [47], NRGNN [3], and RTGNN [24] encounter

scalability issues, primarily due to Out-of-Memory (OOM) prob-

lems. This limitation underscores the need for scalable solutions

capable of accommodating the vast node sets characteristic of large

graphs. Fortunately, Our LIME method has time and memory lin-

ear complexities and is able to scale to large graphs. Let’s denote

𝑁 as the number of nodes on a graph, After removing the other

constants, the time and memory complexities for training and in-

ference are both 𝑂 (𝑁), which is linear to the number of nodes

𝑁 . The full analysis and computational overhead can be found in

Appendix C. The linear complexity predicts the scalability of LIME,

and the practical scalability and efficacy of LIME are empirically

validated through comparative experiments on three large-scale

graph datasets. As reported in Table 3, LIME not only demonstrates

superior scalability but also maintains robust performance in sce-

narios with prevalent label noise, thereby affirming its potential as a

scalable and effective solution for graph cross-supervised problems.

5.4 Ablation Study
LIME integrates the positional embedding, the networkwithMixture-

of-Experts, and the corresponding Lipshitz bound to improve the

generalization of similarity network. Thus, to answer the second

research question RQ-2, we remove each of these components and

conduct ablation experiments. The results are shown in Table 2.

In particular, we ablate the model as (a) without positional embed-

ding (w.o. Possition.), (b) without Mixture-of-Experts in MLPMoE

(w.o. MLPMoE), (c) without Mixture-of-Experts in GNNMoE (w.o.

GNNMoE), (d) without the Lipshitz bound (w.o. Lipshitz), and (e)

using the vanilla GCN instead of LIME. The results show that re-

moving any component of the LIME decreases its performance

when novel classes contain noises. This highlights the critical role

each component plays in generalizing the similarity knowledge

and its ability to provide robustness against label noises. For (a)

w.o. Struc., removing the positional embedding of the similarity

network decreases LIME’s ability to learn position similarity knowl-

edge. For example, on the CiteSeer dataset, the model experiences a

0.69% loss in accuracy when the label noise rate is 0.1, and a 4.18%

loss in accuracy when the label noise rate increases to 0.3. For (b)

w.o. MLPGNN, removing the MoE in MLPMoE prevents the model

from learning diverse similarity representations, indicating lower

model capacity limits the model’s generalization to unseen data

Figure 3: The classification accuracy with different numbers
of experts (left) and the inference loss on novel classes when
training on base classes on the Cora dataset (right).

distribution. On the Cora dataset, the removal of this component

results in a 23.2% loss in accuracy when the label noise rate is 0.1,

and a 29.5% loss in accuracy when the noise rate increases to 0.3.

For (c) w.o. GNNMoE, removing MoE in GNNMoE prevents the

model from learning diverse node representations. On the Photo

dataset, the removal of this component results in a 0.57% loss in

accuracy when the label noise rate is 0.1, and a 1.81% loss in ac-

curacy when the noise rate increases to 0.3. For (d) w.o. Lipshitz,
removing the Lipshitz bound for the Mixture-of-Experts network

decreases the model’s performance due to the loss of generalization

for similarity. On the Cora dataset, it results in a 2.40% decrease in

accuracy when the noise rate is 0.1, and a 8.27% loss in accuracy

when the noise rate decreases to 0.3. For (e) Vanilla GCN, remov-

ing all components degenerates LIME into a vanilla GCN model.

This results in a 10.37% decrease in accuracy on the Cora dataset,

an 11.34% loss in accuracy on the CiteSeer dataset, and an 8.69%

loss on the Computer dataset when the label noise rate is 0.3. This

ablation study demonstrates the contribution of each component

in the proposed LIME model and shows the effectiveness of LIME

in improving the GNNs’ performance against noise labels.

5.5 What Wins Better Performance Against
Label Noise?

To address the third research question RQ-3, we investigate the
main generalizing contribution of ourmodel provided by theMixture-

of-Experts as well as corresponding Lipshitz bounds and analyze

how they generalize similarity knowledge.

Mixture-of-Experts. To generalize the model to node pair features

with distribution shift, we introduce the Mixture-of-Experts to the

similarity network. SimMoE model contains multiple experts, thus

it obtains diverse representations and improves the generalization.

As shown in Figure 3, models with more experts bring better per-

formance of LIME. Although too many experts decrease the model

performance because each expert is dispatched with too little data,

i.e., the data-hungry problem, it can be solved by sampling more

nodes to form more similar features in SimMoE during training.

Lipshitz Bound. To study the effectiveness of Lipshitz bound dur-

ing generalizing similarity inference when a data distribution shift

happens, we plot the loss curve in Figure 3. The results show that

as the training epoch increases, thanks to the generalization ability

learned by the Lipshitz bounded network, the loss of the similarity

network equipped with LIME continues to decrease. On the other

hand, the similarity network without the Lipshitz bound gradually

KDD ’24, August 25 - 29, 2024, Barcelona Xiangchi Yuan, Yijun Tian, Chunhui Zhang, Yanfang Ye, Nitesh V Chawla, and Chuxu Zhang

Table 2: Ablation studies for our method on three graph datasets of varying label noise rate. N.R. denotes label noise rate on
novel classes and w.o. represents no label noise. The best result is bolded and the runner-up is underlined.

Dataset Cora CiteSeer A-Photo

N.R. w.o. 0.1 0.3 w.o. 0.1 0.3 w.o. 0.1 0.3

GCN 86.83 ± 0.38 82.47 ± 0.55 77.86 ± 0.35 73.80 ± 0.32 67.58 ± 0.76 62.98 ± 0.57 94.89 ± 0.08 91.29 ± 1.36 87.99 ± 2.40

w.o. Position 87.79 ± 0.14 86.72 ± 0.35 87.75 ± 0.34 74.44 ± 0.59 74.59 ± 0.53 70.14 ± 0.43 94.59 ± 0.13 92.96 ± 0.76 93.75 ± 2.40

w.o. MLPMoE 87.38 ± 0.25 86.53 ± 0.26 86.75 ± 0.46 76.33 ± 0.40 73.62 ± 0.28 73.17 ± 0.36 94.59 ± 0.77 92.45 ± 0.50 91.65 ± 0.80

w.o. GNNMoE 87.12 ± 0.35 86.63 ± 0.13 86.82 ± 0.67 76.93 ± 0.76 74.22 ± 0.56 73.07 ± 0.27 94.89 ± 0.44 92.68 ± 0.32 91.88 ± 1.07

w.o. Lipshitz 88.34 ± 0.27 84.54 ± 0.49 79.96 ± 0.79 75.64 ± 0.55 74.53 ± 0.42 64.72 ± 0.92 93.19 ± 0.60 91.47 ± 0.36 89.43 ± 0.80

LIME 88.34 ± 0.32 86.94 ± 0.24 88.23 ± 0.44 75.82 ± 0.33 75.28 ± 0.70 74.32 ± 0.32 94.51 ± 0.18 93.25 ± 0.24 93.79 ± 0.28

Table 3: The performances of LIME and scalable baselines on
three large-scale graphs. N.R. denotes label noise rate and
w.o. represents no label noise. The best result is bolded.

Dataset N.R. GCN GPPT SimTrans LIME

Flickr
w.o. 52.19±0.45 53.34±0.33 51.65±0.26 53.96±0.20
0.1 48.57±0.90 51.03±1.01 50.26±1.57 52.82±0.78
0.3 41.98±1.25 43.27±0.56 45.98±0.48 51.39±2.01

Reddit
w.o. 93.35±0.24 93.45±0.19 92.89±0.13 93.30±0.40

0.1 90.33±0.20 90.86±0.21 90.12±0.34 92.03±0.13
0.3 80.76±1.57 83.03±0.75 83.87±53 89.74±2.38

AMiner
w.o. 63.41±0.23 65.03±0.55 64.33±0.12 64.46±0.23

0.1 58.36±0.21 61.35±0.24 62.35±0.66 63.55±0.78
0.3 50.30±0.32 52.54±1.18 56.40±2.52 62.45±0.95

Figure 4: The similarity scores of nodes with indexes on the
Cora dataset. Blue nodes denote nodes without label noise
and red nodes denote nodeswith label noise. Nodeswith label
noise will be recognized and separated from nodes without
label noise in terms of similarity scores by LIME. The smaller
similarity scores indicate label noise. The higher label noise
rate makes it harder to recognize nodes with label noise.

overfits the training data and loses generalization. This demon-

strates how the Lipshitz bound generalizes similarity knowledge.

5.6 How Similarity Scores Enhance Cross
Supervised Learning against Noise

To address the fourth research question RQ-4, we explore how ob-

tained similarity scores enhance the graph representation learning

when the noise is assigned to the labels. As Figure 4 shows, the

similarity network outputs the scores for each node. Generally, the

Figure 5: T-SNE visualization depicting the node representa-
tions obtained by vanilla GCN and LIME on the Cora dataset.
GCN is fooled by label noise and wrongly clusters node rep-
resentations even if these nodes have different ground-truth
labels (in the red dashed circle). However, our LIME model
still performs well on the clustering of these nodes with label
noise (in the blue dashed circle).

similarity scores for nodes without label noise (blue) are higher

than the scores for nodes with label noise (red). When the label

noise rate is low, i.e. 0.1, nodes with label noise will be easily recog-

nized and separated from nodes without label noise. When the label

noise rate increases to 0.3, the scores for nodes with and without

label noise are relatively closer, which indicates that more label

noise hinders the right calculation of similarity scores. However,

we observe that the average similarity scores for nodes with label

noise are still lower than that for nodes without label noise. After

obtaining the similarity scores, we take them as the weight of each

node’s loss to minimize the negative effect of nodes with label noise.

5.7 Embedding Visualization
Noise labels mistakenly guide the model to map node embeddings

close even if they have different ground-truth labels. As Figure 5

shows, vanilla GCN is fooled by label noise. It wrongly clusters

node representations even if these nodes have different true labels.

This phenomenon becomes even worse when the label noise rate

increases from 0.1 to 0.3. In contrast, LIME performs well on the

clustering of these nodes with label noises. Moreover, LIME also

maps some node representations to the cluster (class) that has a

different label and no label noises, while having better performance

Graph Cross Supervised Learning via Generalized Knowledge KDD ’24, August 25 - 29, 2024, Barcelona

under w.o. noise setting in Table 1. We explain this phenomenon

as LIME can assign lower loss weight to some outlier or wrongly

labeled training nodes and learn better representations.

In addition to the above experiments, we present more comprehen-

sive findings and clarifications, including evaluations on the effect

of different proportions of base classes in Appendix D.2, and the per-

formance of LIME When new nodes with base classes contain label

noise in Appendix D.3. The implementation details PyTorch-style

pseudocode of the LIME model are displayed in Appendix B.2.

6 CONCLUSION
In this paper, we are the first to formulate one practical problem,

Graph Cross Supervised (Weak-Shot) Learning, from the real world,

which describes the need to model new nodes with novel classes

and potential label noises. To solve this problem, we propose LIME,

a novel model to encode new nodes and handle label noises. In

particular, LIME trains the similarity network to capture the knowl-

edge from the original classes, aiming to obtain insights for the

emerging novel classes. We also employ the MoE techniques and

Lipschitz bound to increase the generalization of the similarity net-

work. By utilizing LIME to calculate loss weight for nodes with

potential label noise, the GNN classifier avoids the negative effect

of new nodes with noise labels. Our experimental results show the

effectiveness of LIME in encoding new nodes with novel categories

and the superiority in handling label noises for graph cross super-

vised learning problems and real-world applications.

KDD ’24, August 25 - 29, 2024, Barcelona Xiangchi Yuan, Yijun Tian, Chunhui Zhang, Yanfang Ye, Nitesh V Chawla, and Chuxu Zhang

REFERENCES
[1] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam

Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and

graph networks. arXiv preprint arXiv:1806.01261, 2018.
[2] Junjie Chen, Li Niu, Liu Liu, and Liqing Zhang. Weak-shot fine-grained classifi-

cation via similarity transfer. In NeurIPS, 2021.
[3] Enyan Dai, Charu Aggarwal, and Suhang Wang. Nrgnn: Learning a label noise

resistant graph neural network on sparsely and noisily labeled graphs. In KDD,
2021.

[4] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

Graph neural networks for social recommendation. In WWW, 2019.

[5] Zichu Fei, Qi Zhang, and Yaqian Zhou. Iterative gnn-based decoder for question

generation. In EMNLP, 2021.
[6] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph

convolutional networks. In KDD, 2018.
[7] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-

works. In KDD, 2016.
[8] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation

learning on large graphs. In NeurIPS, 2017.
[9] Judy Hoffman, Sergio Guadarrama, Eric S Tzeng, Ronghang Hu, Jeff Donahue,

Ross Girshick, Trevor Darrell, and Kate Saenko. Lsda: Large scale detection

through adaptation. In NeurIPS, 2014.
[10] Ronghang Hu, Piotr Dollár, Kaiming He, Trevor Darrell, and Ross Girshick.

Learning to segment every thing. In CVPR, 2018.
[11] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu

Wang, and Jie Tang. Mixgcf: An improved training method for graph neural

network-based recommender systems. In KDD, 2021.
[12] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of

self-attention. In International Conference on Machine Learning, 2021.
[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In ICLR, 2015.
[14] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In ICLR, 2017.
[15] Weicheng Kuo, Anelia Angelova, Jitendra Malik, and Tsung-Yi Lin. Shapemask:

Learning to segment novel objects by refining shape priors. In ICCV, 2019.
[16] Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can

gcns go as deep as cnns? In ICCV, 2019.
[17] Guohao Li, Matthias Müller, Guocheng Qian, Itzel Carolina Delgadillo Perez,

Abdulellah Abualshour, Ali Kassem Thabet, and Bernard Ghanem. Deepgcns:

Making gcns go as deep as cnns. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[18] Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training

graph neural networks with 1000 layers. In ICML, 2021.
[19] Yan Liu, Zhijie Zhang, Li Niu, Junjie Chen, and Liqing Zhang. Mixed supervised

object detection by transferring mask prior and semantic similarity. In NeurIPS,
2021.

[20] Zheyuan Liu, Chunhui Zhang, Yijun Tian, Erchi Zhang, Chao Huang, Yanfang

Ye, and Chuxu Zhang. Fair graph representation learning via diverse mixture-of-

experts. WWW, 2023.

[21] Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. Information

network or social network? the structure of the twitter follow graph. In WWW,

2014.

[22] Hoang NT, Choong Jun Jin, and Tsuyoshi Murata. Learning graph neural net-

works with noisy labels. arXiv preprint arXiv:1905.01591, 2019.
[23] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and

Lizhen Qu. Making deep neural networks robust to label noise: A loss correction

approach. In CVPR, 2017.
[24] Siyi Qian, Haochao Ying, Renjun Hu, Jingbo Zhou, Jintai Chen, Danny Z Chen,

and Jian Wu. Robust training of graph neural networks via noise governance. In

WSDM, 2023.

[25] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Gated graph recurrent

neural networks. IEEE Transactions on Signal Processing, 2020.

[26] Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Ge-

offrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-

gated mixture-of-experts layer. In ICLR, 2017.
[27] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph

pre-training and prompt tuning to generalize graph neural networks. In KDD,
2022.

[28] Yijun Tian, Kaiwen Dong, Chunhui Zhang, Chuxu Zhang, and Nitesh V Chawla.

Heterogeneous graph masked autoencoders. In AAAI, 2023.
[29] Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and Nitesh V Chawla.

Learning mlps on graphs: A unified view of effectiveness, robustness, and effi-

ciency. In ICLR, 2023.
[30] Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang,

Nitesh V Chawla, and Panpan Xu. Graph neural prompting with large language

models. In AAAI, 2024.
[31] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.
[32] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks:

analysis and efficient estimation. In NeurIPS, 2018.
[33] Song Wang, Chen Chen, and Jundong Li. Graph few-shot learning with task-

specific structures. NeurIPS, 2022.
[34] SongWang, Kaize Ding, Chuxu Zhang, Chen Chen, and Jundong Li. Task-adaptive

few-shot node classification. In KDD, 2022.
[35] Song Wang, Zhen Tan, Huan Liu, and Jundong Li. Contrastive meta-learning for

few-shot node classification. In KDD, 2023.
[36] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. Kgat:

Knowledge graph attention network for recommendation. In KDD, 2019.
[37] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. Simplifying graph convolutional networks. In ICML, 2019.
[38] Huijun Wu, ChenWang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming

Zhu. Adversarial examples on graph data: Deep insights into attack and defense.

In IJCAI, 2019.
[39] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. A comprehensive survey on graph neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[40] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and

Jure Leskovec. Hierarchical graph representation learning with differentiable

pooling. In NeurIPS, 2018.
[41] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. Graph contrastive learning with augmentations. In NeurIPS, 2020.
[42] Donghan Yu, Chenguang Zhu, Yiming Yang, and Michael Zeng. Jaket: Joint

pre-training of knowledge graph and language understanding. In AAAI, 2022.
[43] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung

Nguyen. Are graph augmentations necessary? simple graph contrastive learning

for recommendation. In SIGIR, 2022.
[44] Xiangchi Yuan, Chunhui Zhang, Yijun Tian, Yanfang Ye, and Chuxu Zhang.

Mitigating severe robustness degradation on graphs. In ICLR, 2023.
[45] Xiangchi Yuan, Chunhui Zhang, Yijun Tian, and Chuxu Zhang. Navigating graph

robust learning against all-intensity attacks. In The Second Workshop on New
Frontiers in Adversarial Machine Learning, 2023.

[46] Chunhui Zhang, Yijun Tian, Mingxuan Ju, Zheyuan Liu, Yanfang Ye, Nitesh

Chawla, and Chuxu Zhang. Chasing all-round graph representation robustness:

Model, training, and optimization. In ICLR, 2023.
[47] Mengmei Zhang, Linmei Hu, Chuan Shi, and Xiao Wang. Adversarial label-

flipping attack and defense for graph neural networks. In 2020 IEEE International
Conference on Data Mining (ICDM), 2020.

[48] Yanfu Zhang, Shangqian Gao, Jian Pei, and Heng Huang. Improving social

network embedding via new second-order continuous graph neural networks.

In KDD, 2022.
[49] Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, and George Karypis. Learning

graph neural networks with deep graph library. In WWW, 2020.

[50] Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Da Yin, Jiarong Xu, Yang

Yang, and Jie Tang. Graph robustness benchmark: Benchmarking the adversarial

robustness of graph machine learning. In NeurIPS, 2021.
[51] Yuanyi Zhong, Jianfeng Wang, Jian Peng, and Lei Zhang. Boosting weakly

supervised object detection with progressive knowledge transfer. In ECCV, 2020.

Graph Cross Supervised Learning via Generalized Knowledge KDD ’24, August 25 - 29, 2024, Barcelona

A PROOFS
A.1 Proof of Lemma 4.1 in Section 4

Proof. We observe that

∥𝑔(𝒙) − 𝑔(𝒚)∥
∥𝒙 −𝒚∥ =

[𝑔𝑖 (𝒙) − 𝑔𝑖 (𝒚)]𝑛𝑖=1

∥𝒙 −𝒚∥

=

[|𝑔𝑖 (𝒙) − 𝑔𝑖 (𝒚) |∥𝒙 −𝒚∥

]𝑛
𝑖=1

 . (17)

Furthermore, for each 𝑖 ∈ [𝑛], |𝑔𝑖 (𝒙) − 𝑔𝑖 (𝒚) |∥𝒙 −𝒚∥ ≤ Lip(𝑔𝑖). Therefore,
we can write

Lip(𝑔) = sup

𝒙≠𝒚

∥𝑔(𝒙) − 𝑔(𝒚)∥
∥𝒙 −𝒚∥

= sup

𝒙≠𝒚

[|𝑔𝑖 (𝒙) − 𝑔𝑖 (𝒚) |∥𝒙 −𝒚∥

]𝑛
𝑖=1

≤ sup

𝒙≠𝒚

[Lip(𝑔𝑖)]𝑛𝑖=1

 =

[Lip(𝑔𝑖)]𝑛𝑖=1

 ,
(18)

□

A.2 Proof of Proposition 4.2 in Section 4
Proof. Let 𝒀 denotes the output of an𝐿-layerMixture-of-Experts

network with input 𝑿 . Assuming the commonly used ReLU activa-

tion function as the non-linear layer 𝜌 (·), we have Lip(𝜌) = 1. First,

we consider the Lipschitz constant between the hidden states of

two node feature pairs output by any layer ℎ(·) in 𝑓 (·). Let ℎ(𝑥1)
and ℎ(𝑥2) represent the hidden states of input feature 𝑥1 and 𝑥2,

respectively. Since two inputs have the same activated experts, we

assume each expert has a very close gate value, i.e. 𝑝𝑘
𝑙
, from a sta-

tistical perspective. By applying the triangle inequality, Lemma 4.1,

we obtain:

∥ℎ(𝑥1) − ℎ(𝑥2)∥
∥𝑥1 − 𝑥2∥

=

∑𝐾
𝑘=1

𝑝𝑘 [ℎ(𝑥1) − ℎ(𝑥2)]

∥𝑥1 − 𝑥2∥

⩽

∑𝐹 ′
𝑖=1

∑𝑚
𝑘=1

𝑝𝑘
[
ℎ𝑘 (𝑥1)𝑖 − ℎ𝑘 (𝑥2)𝑖

]
∥𝑥1 − 𝑥2∥

⩽

𝐹 ′ ×max

𝑖

∑𝑚
𝑘=1

𝑝𝑘 [ℎ𝑘 (𝑥1)𝑖 − ℎ𝑘 (𝑥2)𝑖]
∥𝑥1 − 𝑥2∥

 ,
(19)

let 𝑓 (𝑥) 𝑗 denotes the 𝑗-th column of the matrix 𝑓 (𝑥). We denote

ℎ𝑘
𝑙
(·) as the𝑘-th expert of the 𝑙-th layer in 𝑓 (·), then by applying the

conclusion from Lemma 4.1 and leveraging the Lipschitz property

of the ReLU activation function, we have:

𝑓 (𝑥1) 𝑗,1 − 𝑓 (𝑥2) 𝑗,2

𝑥 𝑗,1 − 𝑥 𝑗,2

 ⩽
𝐿∏
𝑙=1

𝐹 𝑙 ′


𝐾𝑙∑︁
𝑘=1

𝑝𝑘
𝑙
J𝑘 (ℎ𝑙)

 𝑗

∞

, (20)

where 𝑥 𝑗,1 and 𝑥 𝑗,2 denote 𝑗-th nodes pair similarity features in 𝑥1

and 𝑥2, respectively, and

[
J (ℎ𝑙)

]
𝑗
represents the 𝑗-th node pair

similarity feature’s the Jacobian matrix of the 𝑙-th layer. Therefore,

the Lipschitz constant for the MLPMoE can be expressed as:

Lip(𝑓) = max

𝑗

𝐿∏
𝑙=1

𝐹 𝑙 ′


𝐾𝑙∑︁
𝑘=1

𝑝𝑘
𝑙
𝑝𝑘
𝑙
J𝑘 (ℎ𝑙)

 𝑗

∞

. (21)

In summary, we have shown that for any two input samples 𝑥1
and 𝑥2, the Lipschitz constant of the MLPMoE, denoted as Lip(𝑓),
satisfies:

∥𝒀1 − 𝒀2∥ ⩽ Lip(𝑓) ∥𝑿1 − 𝑿2∥ , (22)

where 𝒀 denotes the output of the MLPMoE for inputs 𝑿 . This

inequality implies that the Lipschitz constant Lip(𝑓) controls the
magnitude of changes in the output based on input distribution

shift. Therefore, we have established the following result:

∥𝒀1 − 𝒀2∥ ⩽
𝐿∏
𝑙=1

𝐹 𝑙 ′


𝐾𝑙∑︁
𝑘=1

𝑝𝑘
𝑙
J𝑘 (ℎ𝑙)

 𝑗

∞

∥𝑿1 − 𝑿2∥ . (23)

This inequality demonstrates that the Lipschitz constant of the

MLPMoE, Lip(𝑓), controls the magnitude of the difference in the

output 𝒀 based on the difference in the input 𝑿 . It allows us to

analyze the stability of the model’s output with respect to input

distribution shift. □

B IMPLEMENTATION DETAILS
B.1 Implementation Details of LIME
We report the mean and standard deviation of ten independent runs

with the same data splits and random seeds. We use two layers for

the GCN encoder and the MLP in similarity network. Four experts

is utilized for each layer. In addition, we set the learning rate to

0.01 and the noisy gate rate to 0.01. The epoch number for training

similarity network is 100 and for node classification is 500. We use

Adam [13] to optimize the model. Both the SimMoE and the GNN

classifier are implemented in PyTorch and trained on the NVIDIA

V100 GPU. The hidden sizes for GNNMoE and MLPMoE are 32 and

16 respectively. For classification GCN, the hidden sizes are {16,

16, 64, 64, 32, 32, 64, 64, 64} for {Cora, CiteSeer, Photo, Computer,

Actor, Wisconsin, Flickr, Reddit, AMiner} datasets. The code can be

accessed through this anonymous link
1
. The statistics of different

datasets are listed in Table 4.

Table 4: Statistics of datasets used in the experiments.

Name #nodes #edges #features #classes

Cora 2,708 10,556 1,433 7

CiteSeer 3,327 9,104 3,703 6

Computers 13,752 491,722 767 10

Photo 7,650 238,162 745 8

Actor 7,600 30,019 932 5

Wisconsin 251 515 1,703 5

Flickr 89,250 449,878 500 7

Reddit 232,965 11,606,919 602 41

AMiner 659,574 2,878,577 100 18

1
https://tinyurl.com/GraphMixedSupervisedLearning

https://tinyurl.com/GraphMixedSupervisedLearning

KDD ’24, August 25 - 29, 2024, Barcelona Xiangchi Yuan, Yijun Tian, Chunhui Zhang, Yanfang Ye, Nitesh V Chawla, and Chuxu Zhang

Table 5: The performances of graph few-shot learning base-
lines and our LIME method on the Cora dataset.

Noise rate GCN RTGNN GLITTER TENT COSMIC LIME

0.0 86.83 85.61 84.03 85.54 86.96 88.34
0.1 82.47 84.94 83.21 82.85 84.84 86.94
0.3 77.86 82.95 80.34 80.32 82.47 88.23

B.2 Pseudo Code
Algorithm 1 displays a PyTorch-style pseudocode of LIME model

in detail.

Algorithm 1: LIME: A simplified PyTorch-style Pseudocode of LIME.

1

for epoch in range(1, M):
Eq. (5), input: G=(A, X)
X_P = Node2Vec(A), X_F = CONCAT(X_P,X)
Eq. (6) Encode node features
Z_n = GNNMoE (A, X_F)
Pair node embeddings to obtain the similarity features
Z = Pair(Z_n)
Eq.(9) Obtain similarity scores
Scores_Prediction = MLPMoE(Z)
Eq. (14) Calculate the Lipschitz bound Lip(f)
Lipschitz_bound = Lip(MLPMoE)
Eq. (15) Obtain final loss.
Loss_sim = L_s + Lipschitz_bound
Loss_sim.backward()
optimizer.step()

After new node arriving, G=(A, X) becomes to G'=(A', X')
Utilizing trained SimMoE to infer the training nodes and

obtain the similarity matrix S.
S = SimMoE_model(A',X')
Sum each row of the similarity matrix to obtain the final

similarity score W for each node.
W = Sum (S_i)
for epoch in range(1, N):

input: G'=(A', X')
Cls_Prediction = GNN(A',X')
Eq. (16)Train GNN on downstream tasks with weighted loss.
Loss = W*L_s
Loss.backward()
optimizer.step()

B.3 More Details about Baselines
Here we include more details about baselines in the experiment

part. We keep the parameters and configurations of baselines the

same as in the original paper.

• GCN [14]: Graph Convolution Network uses a localized first-

order approximation of spectral graph convolutions as its convo-

lutional architecture.

• CP-GNN [47]: This method proposes a defense framework that

introduces a community-preserving self-supervised task as regu-

larization to avoid overfitting on nodes with label noise.

• NRGNN [3]: NRGNN proposes to link the unlabeled nodes

with labeled nodes of high feature similarity and utilize accurate

pseudo labels to reduce the effects of label noise.

• GPPT [27]: For GPPT framework, pre-trained GNNs could be

applied without tedious fine-tuning to evaluate the linking prob-

ability of token pair, and produce the node classification decision.

We find this method has a strong performance when there exists

label noise.

• SimTrans [2]: SimTrans transfers pairwise semantic similarity

from base categories to novel categories with additional adversar-

ial loss. SimTrans is originally designed for fine-grained image

classification and we adapt it to graph data.

• Jaccard-GCN [38]:Jaccard-GCN is originally designed to em-

power the GCN model with strong robustness against graph

structure perturbation. We adapt Jaccard-GCN to our setting

by calculating Jaccard similarity scores to replace end-to-end

similarity calculation in LIME.

B.4 More Baselines
We further experiment on 3 popular graph-based few-shot learning

methods GLITTER [33], TENT [34], and COSMIC [35]. From experi-

ment results in Table 5, we find graph-based few-shot learningmeth-

ods perform better than Vallina GCNunder the label noise. However,

these methods are outperformed by the most recent graph weakly

supervised baseline RTGNN and our method. This experimental

observation aligns with previous computer vision research [2] on

cross-supervised learning, which shows that weakly supervised

learning methods are more powerful in cross-supervised learning

problems compared with few-shot learning methods.

C COMPLEXITY AND COMPUTATIONAL
OVERHEAD

Complexity. Here we analyze the time and memory complexities

of our method. Let 𝑁 be the number of nodes, 𝑑 be the size of

the hidden channels (we assume it is of the same order as the

size of the input features), 𝑙1 be the number of encoder layers

in the GNNMoE, 𝑙2 be the number of MLPMoE layers, 𝑙3 be the

number of classification GNN layers, 𝑘 be the number of experts

for MoEs, 𝑛 be sampled nodes from each class during constructing

inference similarity matrix, our comprehensive complexity analysis

is structured as follows:

Complexities for training. For eachMoE layer in SimMoE,𝑁 /𝑘 nodes
are distributed into each expert, resulting in 𝑂 (𝑑2𝑁 /𝑘) time and

𝑂 (𝑑2 + 𝑑𝑁 /𝑘) memory complexity. For all 𝑘 experts, the total time

complexity is 𝑂 (𝑑2𝑁) and memory complexity is 𝑂 (𝑘𝑑2 + 𝑑𝑁).
The gating network is trained with 𝑂 (𝑑𝑘𝑁) time complexity and

constant 𝑂 (𝑑𝑘) memory complexity for gating in one layer. For

Lipschitz bound calculation, the time and memory complexities are

2𝑑𝑁 . For constructing similarity features, the time complexity is

𝑁 and the memory complexity is 2𝑑𝑁 Overall time complexity of

SimMoE module is𝑂 ((𝑙1 + 𝑙2)𝑑𝑁 (𝑑 + 𝑘) + (2𝑑 + 1)𝑁) and memory

complexity is𝑂 ((𝑙1+𝑙2)𝑑 (𝑁 +𝑘𝑑+𝑘)+4𝑑𝑁). For GNN classifier, the

time complexity is𝑂 (𝑙3𝑑2𝑁) and the memory complexity𝑂 (𝑙3𝑑𝑁 +
𝑙3𝑑

2).
Complexities for inference. The complexity analysis of inference is

similar to the training process but no Lipschitz bound calculation.

For constructing the similarity matrix and obtaining similarity

scores, the time complexity is 2𝑛𝑁 and the memory complexity is

(2𝑑 + 1)𝑛𝑁 . Overall time complexity of SimMoE module is 𝑂 ((𝑙1 +
𝑙2𝑛)𝑑𝑁 (𝑑 +𝑘) + 2𝑛𝑁) and memory complexity is𝑂 ((𝑙1 + 𝑙2𝑛)𝑑 (𝑁 +

Graph Cross Supervised Learning via Generalized Knowledge KDD ’24, August 25 - 29, 2024, Barcelona

Table 6: Full ablation studies for our method on three graph datasets of varying label noise rate. N.R. denotes label noise rate
on novel classes and w.o. represents no label noise. The best result is bolded and the runner-up is underlined.

Dataset Noise GCN w.o. Position w.o. MLPMoE w.o. GNNMoE w.o. Lipshitz LIME

Cora
w.o. 86.83 ± 0.38 87.79 ± 0.14 87.38 ± 0.25 87.12 ± 0.35 88.34 ± 0.27 88.34 ± 0.32
w. 0.1 82.47 ± 0.55 86.72 ± 0.35 86.53 ± 0.26 86.63 ± 0.13 84.54 ± 0.49 86.94 ± 0.24
w. 0.3 77.86 ± 0.35 87.75 ± 0.34 86.75 ± 0.46 86.82 ± 0.67 79.96 ± 0.79 88.23 ± 0.44

CiteSeer
w.o. 73.80 ± 0.32 74.44 ± 0.59 76.33 ± 0.40 76.93 ± 0.76 75.64 ± 0.55 75.82 ± 0.33

w. 0.1 67.58 ± 0.76 74.59 ± 0.53 73.62 ± 0.28 74.22 ± 0.56 74.53 ± 0.42 75.28 ± 0.70
w. 0.3 62.98 ± 0.57 70.14 ± 0.43 73.17 ± 0.36 73.07 ± 0.27 64.72 ± 0.92 74.32 ± 0.32

Photo
w.o. 94.89 ± 0.08 94.59 ± 0.13 94.59 ± 0.77 94.89 ± 0.44 93.19 ± 0.60 94.51 ± 0.18

w. 0.1 91.29 ± 1.36 92.96 ± 0.76 92.45 ± 0.50 92.68 ± 0.32 91.47 ± 0.36 93.25 ± 0.24
w. 0.3 87.99 ± 2.40 93.75 ± 2.40 91.65 ± 0.80 91.88 ± 1.07 89.43 ± 0.80 93.79 ± 0.28

Computer
w.o. 89.83 ± 3.33 90.83 ± 0.87 90.83 ± 1.24 89.45 ± 2.09 89.83 ± 3.33 90.28 ± 1.08

w. 0.1 85.91 ± 3.92 89.12 ± 1.75 87.77 ± 2.55 88.66 ± 0.68 85.91 ± 3.92 89.45 ± 0.21
w. 0.3 80.44 ± 7.31 88.87 ± 4.01 86.90 ± 4.01 87.65 ± 2.12 80.44 ± 7.31 89.13 ± 1.22

Actor

w.o. 26.09 ± 0.73 29.09 ± 0.21 28.76 ± 0.43 28.87 ± 0.35 26.01 ± 0.66 29.17 ± 0.51
w. 0.1 25.45 ± 0.46 29.57 ± 0.25 28.78 ± 0.21 29.07 ± 0.34 27.47 ± 0.49 29.68 ± 0.34
w. 0.3 25.22 ± 0.65 28.00 ± 0.40 28.45 ± 0.38 28.67 ± 0.24 26.96 ± 0.21 29.68 ± 0.24

Wisconsin
w.o. 47.20 ± 2.40 46.80 ± 2.40 47.00 ± 2.40 48.40 ± 0.88 46.80 ± 1.05 48.40 ± 2.65
w. 0.1 34.00 ± 1.26 44.00 ± 2.26 35.20 ± 2.26 43.80 ± 1.55 37.20 ± 1.40 44.00 ± 2.83
w. 0.3 27.60 ± 1.96 38.40 ± 2.40 35.00 ± 3.48 38.20 ± 2.06 38.60 ± 2.45 38.80 ± 2.40

Table 7: Training time (s) on 32GB Nvidia V100 GPU for dif-
ferent methods.

Wisconsin Actor Cora CiteSeer Photo Computers

GCN 7.32 10.20 9.02 9.92 10.05 18.14

SimTrans 8.03 34.76 12.98 15.09 34.20 89.98

RTGNN 10.45 50.35 20.56 19.36 50.62 140.47

LIME 8.49 38.71 13.14 16.62 39.87 98.87

𝑘𝑑 + 𝑘) + (2𝑑 + 1)𝑛𝑁). For GNN classifier, the time complexity is

𝑂 (𝑙3𝑑2𝑁) and the memory complexity 𝑂 (𝑙3𝑑𝑁 + 𝑙3𝑑2).
In conlusion, For training, the overall time complexity is𝑂 ((𝑙1+

𝑙2)𝑑𝑁 (𝑑 + 𝑘) + 𝑙3𝑑2𝑁 + (2𝑑 + 1)𝑁) and the memory complexity is

𝑂 ((𝑙1 + 𝑙2)𝑑 (𝑁 + 𝑘𝑑 + 𝑘) + 𝑙3𝑑𝑁 + 𝑙3𝑑2 + 4𝑑𝑁); For inference, the
overall time complexity is 𝑂 ((𝑙1 + 𝑙2𝑛)𝑑𝑁 (𝑑 + 𝑘) + 2𝑛𝑁 + 𝑙3𝑑2𝑁)
and the memory complexity is 𝑂 ((𝑙1 + 𝑙2𝑛)𝑑 (𝑁 + 𝑘𝑑 + 𝑘) + (2𝑑 +
1)𝑛𝑁 + 𝑙3𝑑𝑁 + 𝑙3𝑑2). After removing the constants, the time and

memory complexity for training and inference is 𝑂 (𝑁), which is

linear to the number of nodes 𝑁 . The linear complexities predict

the potential scalability and efficiency of LIME. The scalability

of LIME has been verified by Section 5, and we conduct further

experiments on training overhead as follows.

Training overhead.We compare our method with Vallina GCN

and other competitive baselines in Table 7. Since the inference over-

head of our method on downstream tasks is the same as the Vallina

GNNmodel, we don’t list the detailed inference time. Table A shows

that, although our method consumes more time compared with

Vallina GCN, it is still more efficient than RTGNN and comparable

with SimTrans.

D EXTRA EXPERIMENTS
D.1 Full Ablation Studies
Here we provide the full ablation studies on six datasets. The results

are provided in Table 6.

D.2 The Effect of Different Proportions of Base
Classes

For our LIME model, the largest class percentages of new arriving

nodes LIME is able to handle is (𝑘 − 2)/𝑘 , where 𝑘 denotes the

total number of node classes for the graph after new nodes arrive.

Let’s denote the total number of node classes for graphs after new

nodes arrive is 𝑘 . The largest ability of LIME to handle new arriving

nodes is related to the number of classes 𝑘𝑛 for these new nodes.

LIME works and graph weak-shot learning problem exists when

𝑘𝑛 ∈ [1, 𝑘 − 2] (the largest percentage is (𝑘 − 2)/𝑘), since 2 is the
least class number to construct node pairs and label noise. When

the number (percentages) of node classes of new nodes increases,

there are fewer nodes in the original graph to train LIME, which

leads to the generalization of SimMoE and the performance of LIME

decreases. We conducted the experiment on a small dataset Cora

and a large dataset Flickr to observe this process and present results

in Table 8.

D.3 When New Nodes with Base Classes
Contain Label Noise

In our setting, we set new nodes belonging to novel classes to solve

themost challenging problem, i.e. Graph Cross Supervised Learning.

However, this doesn’t mean LIME can not handle the condition that

new nodes belong to both novel and base classes. We set 30% base

class nodes as new nodes and report experiment results in Table ??,
which illustrates the effectiveness of LISTEN when new arriving

nodes are from both base and novel classes. LIME still outperforms

Vallina GCN and the best baseline RTGNN.

KDD ’24, August 25 - 29, 2024, Barcelona Xiangchi Yuan, Yijun Tian, Chunhui Zhang, Yanfang Ye, Nitesh V Chawla, and Chuxu Zhang

Table 8: The graph cross-supervised learning performances
of different Num of new classes/ Num of all classes rates on
the Cora and Flickr datasets. The label noise rate on new
nodes with new classes is 0.3.

Dataset Cora Flickr

Num of new classes/

Num of all classes

GCN LIME GCN LIME

1/7 86.87 88.34 53.50 53.76

2/7 80.07 87.53 45.34 52.45

3/7 78.78 87.07 41.98 51.39

4/7 72.88 83.58 38.52 49.05

5/7 68.63 74.91 35.78 47.24

Table 9: The model performances when new nodes with la-
bel noise are from both base (30%)and novel classes on the
Cora dataset. N.R. denotes label noise rate and + denotes the
improvement of LIME compared to the Runner-up.

N.R. Vallina GCN RTGNN [3] LISTEN +

0.0 86.33 85.12 87.54 2.42

0.1 81.02 83.21 85.97 2.76

0.3 75.06 80.32 85.20 4.88

Table 10: The performance of LIME with different similarity
feature construction methods.

Construction method Cora CiteSeer Photo Computer Actor Wisconsin

Random 88.23 74.32 93.79 89.13 29.68 38.80
Same Num 87.97 74.21 93.95 89.34 29.85 38.67

D.4 Sampling Strategy to Obtain Similarity
Features

Similarity features 𝑬 are constructed by randomly assigning a node

for each node and the corresponding label 𝑌 is 1 if these two nodes

belong to the same class, and otherwise 0. This is our sampling

strategy to random sample 𝑁𝑖 node pairs from 𝑁 2
total node pairs

to decrease the calculation complexity, where we take 𝑁𝑖 = 𝑁 in

our experiments. There are other ways to construct 𝑺 compared

with random sampling. Random sampling may cause class imbal-

ance problems when the number of classes increases, although

this problem doesn’t occur in our paper. To avoid possible class

imbalance problems in the feature, we can construct similarity fea-

tures by sampling the same number of node pair features that have

been labeled ’similar’ and ’dissimilar’, which we denote as ’Same

Num’ in the following experiment. We conduct the experiment and

report the results of two similarity feature construction methods in

Table 10.

E A BITTER LESSON FROM THE REAL
WORLD: GRAPH CROSS SUPERVISED
LEARNING PROBLEM IS IMPORTANT

Wewould like to emphasize the importance and reality of the Graph

Cross Supervised Learning problem proposed by our paper here.

Precedents in general machine learning. The cross-supervised
learning problem (also named mixed-supervised learning or weak-

shot learning) is a well-defined problem in the general machine

learning and computer vision domain. Specifically, previous works

have explored similar settings in a wide range of tasks, such as

object detection [9, 19, 51], fine-grained classification [2], semantic

segmentation [51], and instance segmentation [10, 15]. Similarly,

learning on graphs also faces a similar problem but is challenged

by the uniqueness of graph data. Therefore, we first propose the

graph cross supervised learning problem and give a corresponding

solution, i.e. LIME model.

Real-world graph data face graph cross supervised learning
problems. Real-world graph web applications like social networks

and recommendation systems face the graph mixed-supervised

learning problem with two realistic intuitive pieces of evidence.

The first evidence is realistic graphs are growing rapidly (more new

nodes with more new classes arriving): the real-world report
2
have

shown social network BeReal’s 1,200% increase in Gen Z usage As

of April 2023; the report
3
shows that the number of Boomers who’d

used TikTok grew by 164%. The second piece of evidence is realistic

graphs are facing more noise like bots compared to before (label

noise rate would increase): the real-world report
4
have shown that

bots present on social graphs like Twitter at high intensities (20%);

the report
5
cited Carnegie Mellon research indicating that 30 to 49

percent of accounts tweeting about the protests were bots. These

two pieces of evidence indicate that, with real-world graphs increas-

ing rapidly and more disinformation/noise spread, it’s impossible

to maintain accurate, high-quality, low-efficient annotations on

new nodes with new classes compared to the beginning of anno-

tation, especially for realistic graph applications, that maintained

graph data with new node classes are labeled through cheap and

easy-maintaining approaches like crowdsourcing, pseudo labels by

clustering, and annotators without too much expertise, which leads

to the label noise. Therefore, there exist imbalanced label noise rates

between base class nodes (nearly no noise) and new class nodes

(w. noise). We abstract this problem to the graph cross-supervised

learning problem: base class nodes are labeled accurately while new

class nodes are labeled with noises.

2
Top Social Media Statistics And Trends Of 2023, Forbes, May 18, 2023.

3
The Fastest Growing Social Media Platforms of 2023, Hubspot, April 10, 2023.

4
Twitter Bots Poised to Spread Disinformation Before Election, The New York Times,
October 29, 2020.
5
Who’s a Bot? Who’s Not? The New York Times, June 16, 2020.

https://www.forbes.com/advisor/business/social-media-statistics/
https://blog.hubspot.com/marketing/fastest-growing-social-media-platforms
https://www.nytimes.com/2020/10/29/technology/twitter-bots-poised-to-spread-disinformation-before-election.html
https://www.nytimes.com/2020/10/29/technology/twitter-bots-poised-to-spread-disinformation-before-election.html
https://www.nytimes.com/2020/10/29/technology/twitter-bots-poised-to-spread-disinformation-before-election.html

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Method
	4.1 Training the Mixture-of-Experts Similarity Network on the Original Graph
	4.2 Training GNN on the New Graph with Weighted Node Classification Loss

	5 Experiments
	5.1 Setup
	5.2 Performance Comparison
	5.3 Scale to Large Graphs
	5.4 Ablation Study
	5.5 What Wins Better Performance Against Label Noise?
	5.6 How Similarity Scores Enhance Cross Supervised Learning against Noise
	5.7 Embedding Visualization

	6 Conclusion
	References
	A Proofs
	A.1 Proof of Lemma 4.1 in Section 4
	A.2 Proof of Proposition 4.2 in Section 4

	B Implementation Details
	B.1 Implementation Details of LIME
	B.2 Pseudo Code
	B.3 More Details about Baselines
	B.4 More Baselines

	C Complexity and Computational Overhead
	D Extra Experiments
	D.1 Full Ablation Studies
	D.2 The Effect of Different Proportions of Base Classes
	D.3 When New Nodes with Base Classes Contain Label Noise
	D.4 Sampling Strategy to Obtain Similarity Features

	E A Bitter Lesson From the Real World: Graph Cross Supervised Learning Problem is Important

