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An End-to-End 12-Leading Electrocardiogram
Diagnosis System Based on Deformable
Convolutional Neural Network With
Good Antinoise Ability

Lang Qin", Yuntao Xie, Xinwen Liu
Abstract— Electrocardiogram (ECG) is a tool to help judge
heart activity. In recent years, the convolutional neural net-
work (CNN) and various deep learning algorithms have been
widely used in ECG diagnosis. CNN only considers the local
feature. However, the ECG signal is susceptible to noise, and the
waveform is complex, making it difficult for existing methods
to get a good result. This article presents a novel neural
network architecture for ECG diagnosis based on deformable
CNN (Deform-CNN). The architecture makes good use of the
feature-learning capability of deformable convolution to learn
the time-domain and lead characteristics of multilead ECG
signals. The proposed end-to-end method can achieve an over-
all diagnostic accuracy of 86.3% in the 12-lead ECG data
of CPSC-2018, with good antinoise ability, which makes the
method have a more competitive performance than other deep
learning algorithms. The source code is publicly available at
https://github.com/HeartbeatAI/Deform-CNN.

Index  Terms— Convolutional neural network (CNN),
deformable convolution, electrocardiogram (ECG), noise
immunity.

I. INTRODUCTION

EART disease has become one of the most critical

public health problems in the world. It has leaped to
the top fatality rate. About one-third of the world’s annual
deaths are heart disease and its complications [1]. At the
same time, most cardiac diseases can be initially diag-
nosed by electrocardiogram (ECG) records as demonstrated in
Fig. 1, so timely and effective diagnosis of cardiac diseases
based on ECG is important [2].

Automatic detection of ECG is an important topic in the
field of cardiology. Therapeutic techniques based on the con-
ventional ECG analysis are incredibly dependent on doctor’s
knowledge and experience, which is time-consuming and
requires a high qualification level. This can lead to a dilemma
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of under-resourced and overburdened senior doctors and inex-
perienced new doctors who find it difficult to gain experience.
As ECG often contain various noise [3], manual diagnosis is
often influenced by them and misdiagnosed. In recent years,
many automatic analyses based on ECG have been proposed
to solve the above problem.

Many studies on the diagnosis of cardiac diseases are
based on traditional machine learning. Some studies have
used empirical mode decomposition (EMD) to better solve the
high-frequency signal distortion caused by the filter and the
baseline drift in the stationary state, which cannot be solved
by the wavelet transformation [4], [5]. In the feature extraction
part, the ECG signal’s relevant features can be extracted by
many methods, such as wavelet transform, S-transform, and
the Hermite interpolation basis function [6], [7]. There are also
alternative schemes, including hybrid expert system, support
vector machine, genetic algorithm, and other problems that
depend on experience, model, parameters, and so on [8].
The most commonly used methods in data classification are
neural networks [9], [10], the support vector machine [11],
the K-nearest neighbor algorithm [12], the decision tree [13],
and the random forest [14]. Although relevant studies have
achieved good results, it needs more computing resources
to apply to the requirements of instant ECG diagnosis [15].
However, due to the traditional methods’ complexity, it is
challenging to achieve an end-to-end diagnosis, and because
of too many nonlinear components of the signal, the diagnosis
performance is not well, so practical application has many
limitations.

Deep learning technology simulates biological neurons to
automatically extract and process data through supervised
or unsupervised learning, leaving the complex manual data
extraction process to the computer to learn, significantly
reducing data processing complexity automatically. With the
development of deep learning, it has become an emerging
force in ECG diagnosis. Among them, the long short-term
memory (LSTM), which can process the timing signal more
effectively [16], [17], the attention mechanism, which can
focus on a specific range of data [18], and the residual network,
which can effectively utilize the redundant information, can all
achieve a good result in ECG diagnosis [19].

The convolutional neural network (CNN) is a better per-
forming neural network in deep learning, which can achieve
data feature extraction through local receptive fields, weight
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Fig. 1. Tlustration of 12-lead ECG data.

sharing, downsampling, and other methods. CNN can sim-
ulate the mechanism of biological vision and is sensitive
to small-scale features. Therefore, the existing deep learning
methods based on CNN have a strong ability to extract
small-scale features of images [20]. Compared with fully
connected neural networks, it has fewer training parameters,
better robustness, and diagnosis accuracy [21]. The research
results of ECG diagnosis based on CNN can be divided into
three categories. The first method is to use CNN as one stage
of data processing using multistage processing, for exam-
ple, the short-time Fourier transform (STFT), the frequency
sliced wavelet transform, or the cross wavelet transform [22].
Huang et al. [23] transformed the time domain ECG data into
the frequency domain using STFT and CNN. The second way
is an improved end-to-end diagnostic method for CNN, such
as 1-D CNN or multiscale CNN. Ince et al. [6] proposed an
adaptive 1-D CNN based on beat detection and raw ECG
morphology. The other is to combine it with different network
structures, adding residual blocks, or attention module, using
LSTM or bidirectional recurrent neural network (BRNN) to
achieve good results. For example, Wang et al. [24] used the
attention mechanism jointly with multiscale CNN and had a
good result.

In multilead ECG, only local changes in a single lead
are meaningful for 2-D CNN because only the intralead
signal amplitudes are continuous, and the interlead signal
amplitudes are discontinuous. Although multilead ECG signals
are treated as 2-D matrices in this study, they differ from
standard 2-D data, such as images. Diagnostic algorithms for
cardiac diseases should focus on three attributes: integrity,
diversity, and periodicity [15]. Integrity means that various
leads reflect the cardiac status of the same patient. Thus,
the intralead local changes in multilead ECG determine the
diagnosis results. Diversity means that multilead ECG is
synchronized ECG data based on various angles and distances
of the patient’s heart. Thus, it is reasonable to conclude
that multilead ECG reflects various features of the heart.
Periodicity refers to the widespread presence of periodicity
with intralead and interlead. Because the ECG signal without
signal processing is only a kind of time-domain signal, there
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is no 2-D distance, and the data between leads are difficult to
be processed by convolution, which is limited to the spatial
relationship.

Considering the integrity, diversity, and periodicity of the
12-lead ECG signals, the introduction of deformable convolu-
tion can better adapt to ECG features by adaptively changing
the receptive field [25]. Deformable convolution makes the
convolution kernel disperse automatically by assigning posi-
tion vectors for each convolution kernel weight so that the
shape of the convolution kernel can also change automatically
as the convolution kernel weight.

In this article, a novel ECG diagnosis system using
deformable convolution is proposed to process ECG signals.
Deformable CNN (Deform-CNN) is an end-to-end 12-lead
ECG diagnostic algorithm without the need for complex data
preprocessing and expert systems. Unlike traditional methods,
it does not require detection of heartbeats or heart rhythms.
The system proposed in this work is based on conventional
convolution with deformable convolution and can be applied to
long-term continuous cardiac detection and immediate cardiac
disease diagnosis. Deform-CNN achieves a high rate of correct
diagnosis. From the experiment, it has significant advantages
over other deep learning methods in processing multilead ECG
signals.

The contributions of this article are summarized as follows.

1) A novel end-to-end neural network model based on
deformable convolution is proposed. It can take full
advantage of the diversity between leads of ECG signals,
integrity, and periodicity in single leads.

2) The deformable convolutional receptive field can change
adaptively with the task, allowing the model to learn
information in more complex geometric spatial struc-
tures. Compared to conventional CNN, it reduces the
unobserved effects of the act of adjusting neural network
parameters according to human cognition.

3) Explore the diagnostic performance of Deform-CNN in
the face of noise. Three common noises were simu-
lated to validate the noise immunity of Deform-CNN.
Deform-CNN has good noise immunity as seen in the
experimental results.
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The article is organized as follows. In Section II, we will
discuss the work related to Deform-CNN. The proposed
Deform-CNN and the optimization process are described in
detail in Section III. Section IV describes the experiment
and gives the results of a comparison experiment between
Deform-CNN and other structures. Section V gives the
robustness of Deform-CNN to common ECG signal noises.
Section VI summarizes the whole article.

II. THEORETICAL BACKGROUND

The deformable convolution can select features according
to the data characteristics of the actual signal. The kernels
are not limited to the proximity of the signal in time. It is
more like that the spatial transformer network (STN) disperses
the original square convolution sliding window in an adap-
tive manner. The deformable convolution greatly preserving
the original features in the signal and preventing the data
extraction difficulties is caused by the separation of ECG data
features [26].

As shown in Fig. 2, the conventional 3 x 3 convolution’s
geometric structure is completely fixed, so its geometric spatial
variability is limited. Each conventional 3 x 3 convolution is
used once, and the receptive field can be expanded from K x K
to (K + 2) x (K + 2). However, the spatial variability brought
by multiple stacking is always limited. Many parameters
brought about by conventional convolution are also a heavy
burden on the computing equipment. As shown in Fig. 2(b),
although dilated convolution can increase the receptive field
faster, the receptive field’s expansion rate increases linearly
with the number of layers. The deformable convolution will
break the fixed geometric structure. A deformable convolution
layer can be realized by adding a deformable offset vector
to the original position of the convolution kernel. As shown
in Fig. 2(c), the convolution layer’s data extraction ability will
be enhanced, which significantly improves the generalization
ability of the CNN and the capture of ECG.

The extraction of deformable convolution kernel is quite
different from that of conventional convolution. We select a
specific region and then add different weights to different
sampling points in the region. Take a 2-D 3 x 3 convolution
kernel as an example. The expression of the convolution in an
integral equation is shown in (1).

First, we sample the feature map x using a regular grid R
and then summarize the sampled values weighted by w. pg is
the location of output feature map y, and p, enumerates the
location in R. R = {(—1,—1),(—1,0),...,(0, 1), (1, 1)}

Y(po) = D wlpy) - x(pi).

PnER

(1

However, for conventional convolutions, each p, corre-
sponds to the corresponding p;, and there is no change in
the position vector, so it can be expressed as

Y(po) = D w(pa) - x(po+ pu).

Pn€R

)

Deformable convolution has a position offset to be learned
{Ap,jn=1,2,..., N—1, N}, so there will be an offset vector,
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N

(b) (c

Fig. 2. Tllustration of the sampling locations in 3 x 3 conventional and
deformable convolutions. (a) Regular sampling grid of conventional convo-
lution. (b) Dilated convolution with dilation rate 2. (¢) Deformed sampling
locations with some offsets in deformable convolution.

where N = |R]|, so the above formula changes as follows:

y(pO) = Z w(pn) -)C(p() + pn + Apn)-

Pn€R

3)

However, due to decimals’ unavoidable occurrence in the
calculation, bilinear interpolation is used here for noninte-
ger location information, so x(p9 + p, + Ap,) here does
not refer to the corresponding position. Instead, the position
should be calculated by the following formula. Here, p =
po + pn + Ap, is the arbitrary position in the region, ¢
is all spatial distribution vectors, and G(.,.) represents a
bilinear interpolation kernel, which can be decomposed into
1-D interpolation kernels in both directions of the x-axis and
the y-axis because it is 2-D. Thus, it is calculated as in (4)—(6).
n refers to the x-direction or the y-direction

x(p) = D> Glq, p)-x(q) )

q
G(q, p) = g(qx, px) - g(ay, Py) Q)
&(qn, pn) = max(0, 1 — [g, — pal). (6)

The whole process is equivalent to setting the parameters to
be learned in both sides of the (1). It learns the weights of each
place and learns the location of them so that the network can
adaptively diffuse the receptive field into the corresponding
places.

As shown in Fig. 3(b) and (c), we divide the deformable
convolution into three steps, starting with the part of the
displacement part (boxed in blue). The complete displacement
matrix offset comes from the x-direction displacement convo-
lution pConv_x and the y-direction displacement convolution
pConv_y. They are of the same spatial resolution and dilation
as those of the current convolution layer. The next step is
the corresponding convolution kernel weight matrix (boxed in
yellowish) and similar to conventional convolution. Finally,
the calculated displacement matrix is used to generate the
actual displacement of the convolution kernel. The result is
obtained by bilinear interpolation of the convolutional sum of
the corresponding positions (boxed in red).

The ability to integrate more information due to the
deformable convolution’s larger receptive fields allows us to
choose not to use large convolutions with many parame-
ters [25]. Thus, the choice of deformable convolution improves
accuracy by integrating information in a greater receptive field
with only a slight increase in model complexity and compu-
tational effort, resulting in better performance in end-to-end
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Fig. 3. Tllustration of the structure of Deform-CNN. (a) Block diagram of the overall network flow. (b) Block diagram of sublayer in detail. (c) Influence

of 3 x 3 deformable convolution on the feature map.

ECG diagnostic tasks. Thus, it can be embedded in various
structures as a reliable module in the overall neural network.
Simultaneously, such a vast receptive field also compensates
for the defects of CNN, showing strong adaptability.

Because the deformable convolution will extract corre-
sponding features without artificially selecting some informa-
tion, in this way, the loss of information can be reduced, and
useful data can be obtained. Without additional monitoring
signals, they can learn through the target task directly, reducing
the complexity of the neural network and training costs.
It can make the whole network truly meet the end-to-end
requirements and achieve better results.

III. PROPOSED DEFORM-CNN

A. Deform-CNN for ECG Diagnosis

Because conventional 2-D CNN does not fit the charac-
teristics of ECG, meaningful intralead ECG local changes
cannot be captured in conventional 2-D CNN. Considering
the unique attributes of multilead ECG, Deform-CNN for the
ECG diagnosis is proposed. The role of the deformable convo-
lution kernel is summarized by Gao et al. [25] in two points:
awareness of object scale and adaptation of effective receptive
fields (EFRs). Thus, in ECG diagnostic tasks, the information
between leads and the widely available periodic information
can be well exploited by deformable convolution.

Fig. 3(a) illustrates the proposed Deform-CNN with the
specific size of the feature map. Our network takes the
12-leading ECG as a 12 x 7500 input (one lead per row) and
outputs the diagnosis result in an end-to-end manner. It pro-
duces a set of feature maps with single-lead high resolution
using CNN with a kernel size of 1 x 3. The feature maps
after CNN have single-lead high resolutions but with fruitful
detail information, while the feature maps after deformable
convolution have low resolution but the information in the
greater receptive field. Information in the greater receptive
field can help to identify non-Euclidean data structures, such

as multilead ECG signals, and single-lead fine details enable
the extraction of ECG details.

The structure of the Deform-CNN consists of four sublay-
ers and a classification layer. The sublayers consist of two
1-D convolutions and a layer of deformable convolutions in
series. Each sublayer takes the network input or the output of
the previous sublayer as input to this layer. After obtaining
the feature maps after two layers of 1-D CNN and 1-D
max pooling, we implement deformable convolution by con-
structing displacement feature maps and weight feature maps,
multiplying the shifted image of the displacement feature map
with the weight feature map, and then calculating the shifted
feature map after bilinear interpolation.

For such signal data, such as ECG, due to the spatial
regularity of its features, the repeated stacking of deformable
convolution brings too much spatial variability, which will lead
to more difficulty in convergence during training. In terms of
structure, we call the tandem structure of four layers of 1-D
CNN, max-pooling, deformable convolution, and a sublayer.
We construct the neural network by stacking sublayers four
times to achieve integration of multilead ECG signal charac-
teristics. After global pooling, the features are fed into the
classification network. The detailed parameter table is shown
in Table L.

B. Optimization Process of Deform-CNN

In Deform-CNN, the neural network structure with opti-
mizable parameters consists of conventional convolutional
layers and deformable convolutional layers. For conventional
convolution, the optimization process for the weights is shown
as follows:

W «—~W-npvyW @)
where W’ is the updated matrix of weights, W is the matrix
of weights before updating, 7 W is the corresponding gradient
of the error, and 7 is the learning rate.
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TABLE I
ARCHITECTURE OF THE DEFORM-CNN

Layer Layer Details Output

Input — 12x7500
[Conv,1x%3,32,stride=1]+ReLLU 12x7500%x 32
Sublaver. I [Conv,1x3,32,stride=1]+ReLLU 12x7500x32
yer- [Max Pooling,1x4] 12x1875%x32
[Deform_Conv,3 x 3,32,stride=1]+ReLLU 12x1875%x32
[Conv,1 % 3,64,stride=1]+ReLU 12x 1875 x 64
Sublaver.2 [Conv, 1 % 3,64,stride=1]+ReLU 12x1875%x64
ublayer- [Max Pooling,1x4] 12X 469 x 64
[Deform_Conv,3 x 3,64,stride=1]+ReLLU 12x469 x 64
[Conv,1x3,128,stride=1]+ReLLU 12x469x 128
Sublayer 3 [Conv,1x3,128,stride=1]+ReLU 12x469x128
yer- [Max Pooling, 1 x4] 12x118x 128
[Deform_Conv,3 x3,128,stride=1]+ReLU  12x118x 128
[Conv,1x3,256,stride=1]+ReLU 12x118x256
Sublaver.4 [Conv,1x3,256,stride=1]+ReLU 12x118%256
yer- [Max Pooling, 1 x4] 12x30%256
[Deform_Conv,3 x 3,256,stride=1]+ReLU 12x30x%x256

Classification Global Average Pooling(GAP) 256

[Dense layer]+Softmax types of ECG

As shown in Fig. 3(c), the deformable convolution is
implemented by adding two displacement convolution layers
to the conventional convolution to achieve displacement, with
the displacement convolution kernel size matching the weight
convolution kernel size and the output displacement and
weights having the same resolution. The backward propagation
includes two types of gradients:

1) the gradient of the weight kernels;
2) the gradient of the offset kernels.

The first type of gradients has the same form of the com-
putation process as the conventional convolution. The flow of
gradient of the offsets can be backpropagated through (4)—(6).

To be more specific, we can get the partial derivative of
output O; with respect to the x or y component of the offset,
which can be computed as follows:

00; oG Ap,
= zx(pi+p).zqu ®)
p q

dAp, 0Apx
S [0 if [gx — pxl 2 1
ﬁ = g(gy,py)-q1 elseif gy —p, <0 (9)
x |—1 elseif g — p: >0
0G(q, p) 0 ifley—pl=]
ﬁ = g(qs, px) - {1 else if g, — py <0 (10)
Y | —1 else if gy — p, > 0.

IV. EXPERIMENT VALIDATION
A. Data Sets’ Description

The first data set used is from the 2018 China Physiological
Signal Challenge’s training set [27], named CPSC-2018. The
data set contains nine categories: Normal, atrial fibrillation
(AF), first-degree atrioventricular block (I-AVB), left bun-
dle branch (LBBB), right bundle branch (RBBB), premature
atrial contraction (PAC), premature ventricular contraction

2508313

TABLE 11
SERVER CONFIGURATION

CPU Intel(R) Core(TM) 19-9900K
Hardware information =~ RAM 32GB

GPU RTX 2080 8GB

ROM 100 GB

NVIDIA driver version 418.67
Software information ~ CUDA Version 10.1

Python version 3.6.8

Pytorch version 1.4.0+cul01

(PVC), ST-segment depression (STD), and ST-segment ele-
vated (STE). Each recording is unequal in length, and the
original data sampling rate is 500 Hz. We removed the
unusual data, with 5850 recordings remaining. The remaining
data of varying lengths are fully converted into signal data
of 7500 lengths by reducing the sampling rate (down to
250 Hz) and repeating filling (making up 30 s of data with a
total length of fewer than 30 s by copying the existing length.).

This second data set is unused data and validation set
from the 2018 China Physiological Signal Challenge, named
CPSC-Extra [28], which contains 73 different categories. Each
record is unequal in length, and the original data sampling rate
is 500 Hz. We selected data from nine categories, which is
the same as CPSC-2018, and removed the unusual data, with
291 recordings remaining. In the experiments, this data set is
used as an additional test set to verify the generalization of
the model. Meanwhile, we used the same data preprocessing
strategy as CPSC-2018.

B. Experiments Setup

Our network is implemented using Pytorch and Python 3.5,
the network is trained and tested on a server with a 2080 GPU.
The details of the server configuration were shown in Table II.

We use the stochastic gradient descent (SGD) optimizer with
a learning rate of 0.0001. A learning rate decay operation
is adopted with a momentum of 0.5. When the loss does
not decrease for more than 5 epochs, the learning rate will
decrease by 0.1%, and the minimum learning rate is le-7.
In each experiment, the network is trained for 100 epochs,
and the batch size is 8. The training set was put in a random
order, including nine ECG types with different proportions.
When training, the input data were randomly divided using
the method of disordered training to avoid the influence of the
training sequence on the results.

To better validate the performance of the proposed method,
the data set used was randomly divided into the training set,
the validation set, and the testing set, with the detailed data
division shown in Fig. 4. For each experiment, the model with
the best performance on the validation set was selected as the
final testing model.

In order to verify the advantages of the proposed
method, LSTM [16], Resnet [19], and visual geometry
group (VGG) [20] are used for comparison. We also use
two recently proposed well-performed ECG classification
methods. Mostayed et al. [29] used a Bi-LSTM approach to
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TABLE III
OVERALL CLASSIFICATION RESULTS OF DIFFERENT STRUCTURES
Structure 3-C1Dq 4-C1D1q 5-C1D1 3-CaD;q 4-CoDq 5-C2Dq 3-C3Dq 4-C3D1 5-C3Dy
Accuracy 0.765 0.774 0.79 0.780 0.863 0.829 0.829 0.799 0.798
0.9 T . T T :
All ECG Segments

Training

Testing
(20%)

o
3

(80%)

l

Validation
(20%)

Training

(60%)

Fig. 4.
sets.

Ilustration of ECG data division for training, validation, and testing

the diagnosis of ECG data. Liu et al. [30] proposed a modified
Resnet framework, which includes a 17-layers CNN to detect
deep features in ECG. Besides, conventional CNN consisting
of 12 layers (the same number of layers as Deform-CNN)
of 3 x 3 conventional convolution is used for comparison
as it has the same neural network depth as Deform-CNN.
To fairly compare the performance of these methods, the train-
ing strategies and experimental environments of these methods
are identical.

To measure the diagnostic performance of these methods
from multiple perspectives, we introduce three performance
indicators: accuracy, F; score, and x coefficient. Accuracy
is a representation of the classification effect of the network
structure. F score gives a more comprehensive picture of the
actual diagnostic capability of the experimental results. x coef-
ficient is based on the confusion matrix and is commonly used
for consistency testing, which is a measure of classification
performance. These indicators can be defined as follows:

TP + TN
Accuracy = (1)
TP + FN + FP + TN
.. TP (12)
recision = ————
P TP + FP
TP
recall = —— (13)
TP + FN
precision - recall
Fy score = _ (14)
precision + recall
A _
. — ccuracy — p, . (15)

- Pe

In the formulas, TP, FP, TN, and FN refer to the number
of true positive samples, false positive samples, true negative
samples, and false negative samples. Suppose that the number
of real samples in each type to the total number of samples is
Plxs P2xs P3x»--., Tespectively, and the number of predicted
samples in the corresponding type to the total number of sam-
ples is .1, P2, Pass .- ., respectively; then, p, = 377 pixpai

TT

Noise-immunity = T+ TF

(16)

0.8

Accuracy
o
[}

o
3

0.4

0.3 L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Epochs

Fig. 5. Diagnostic accuracy for different Deform-CNN structures.

In addition, to measure the performance of the network
in noisy condition, we introduce noise immunity. It is an
indicator proposed by us to represent the tolerance to the
noise of different network structures. TT refers to the number
of samples that could be correctly classified before and after
noise, and TF refers to those that could be classified before
noise but could not be classified after noise.

C. Exploration of the Deform-CNN Structure

Consider that different combinations of deformable and
conventional convolution lead to different experimental results.
The experiments were designed with different combination
methods for the neural network structure. We have identified
a more efficient basis for structural design i-C,D; through
experiments conducted in preexperiment. C,D; represents the
sublayer obtained by linearly concatenating a conventional
convolution layer with the b deformable convolution layer;
i represents the number of sublayers, which, together with the
classification layer, forms the overall network.

As shown in Fig. 5 and Table III, the experiment was
divided into nine groups, with different sublayer structures and
different numbers of sublayers. The results are expressed by
the diagnostic accuracy. From the diagnostic accuracy plot, all
networks converge at around 50 training rounds, after which
there is only a small oscillation in the diagnostic accuracy
during training. Thus, we take the diagnostic accuracy after
100 epochs of training as a result. It can be seen from the
diagnostic results that a network structure with a sublayer
structure of C;D; has superior diagnostic performance in
comparison. 4-C,D; had the highest diagnostic accuracy rate,
reaching 86.3%. This is an improvement of 3.4% compared
with 5-C,D;. Therefore, we use this structure as Deform-CNN
in the following experiments.
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TABLE IV
COMPARISON WITH VALIDATED STRUCTURE IN DIFFERENT TESTING SETS

Fy score for Different ECG Categories Average

Data Source Method Fy score Accuracy  k coefficient
Normal ~AF  [-AVB LBBB RBBB PAC PVC STD STE !
LSTM [16] 0730 0792 0763 0.848 0909 0268 0763 0800 0.105  0.664 0.773 0.731
VGG-16[20] 0750 0861 0874 0857 0918 0333 0859 0814 0462  0.748 0.813 0.779
Resnet-18 [19] 0730 0882 0877 078 0905 0487 0733 0784 0444  0.737 0.798 0.763
CPSC.2018 Resnet-50 [19] 0712 0876 0845 0760 0904 0395 0716 0772 0500  0.720 0.779 0.740
Mostayed et al. [29] ~ 0.702 0815 0767 0847 0898 0397 0.807 0768 0286  0.699 0.768 0.727
Liu et al. [30] 0768 0887 0880 0.867 0912 0600 0798 0784 0353  0.761 0.797 0.789
Conventional CNN 0731 0.837  0.835 0831 0890 0593 0836 0741 0611 0676 0.801 0.765
Deform-CNN 0.805 0931 0.893 0900 0948 0.663 0871 0800 0.667  0.831 0.863 0.840
LSTM [16] 0769 0960 0.808 0857 0855 0636 0714 0600 0452  0.739 0.770 0.733
VGG-16 [20] 0795 0889 0714 1.000 0942 0276 0906 0786 0545  0.761 0.810 0.779
Resnet-18 [19] 0905 0914 0863 1.000 0967 0571 0787 0754 0571 0815 0.832 0.807
CPSC-Extra Resnet-50 [19] 0764 0895 0809 0750 0906 0524 0846 0.847 0667  0.779 0.814 0.783
Mostayed et al. [29] ~ 0.841  0.860  0.830  0.857 0902 0.667 0820 0746 058  0.790 0.818 0.789
Liu et al. [30] 0800 0866 0792 0824 0915 0571 0939 0714 0700  0.791 0.822 0.791
Conventional CNN  0.861 0914  0.816 0900 0949 0.688 0847 0679 0526  0.798 0.818 0.789
Deform-CNN 0998 0987 0923 0947 0992 0927 0703 0841 0647  0.885 0.897 0.881
The highest score for each class is in bold.
D. Comparison With Existing Methods Confusion Matrix
1 0.01 0.01  0.01 0.13  0.02 0.9
To verify our proposed method’s performance, we com- , T oo s
pared our proposed Deform-CNN with recently proposed ' ' ' '
well-performing ECG classification methods and basic neural 3| 002 002 002 0.01 07
networks. 06
. 4 0.02 0.01 0.04 :
In Table IV, we compare the F; score for different ECG
categories of eight different methods. As shown in Table 1V, 5/ 001 001 1%
the proposed Deform-CNN has an F; score of 0.831, which is o4
comparatively better than the other methods. For each individ- 6| 005 002
ual ECG category, our model has the highest F score in eight 8 o o 1%°
of the total nine categories. To be specific, the conventional 102
CNN and LSTM [16] methods are surpassed by our approach 8y 001
. 101
by 0.155 and 0.167 in F; score. Furthermore, the F; scores ol 0.0
of all categories performed well than others except for STD, Lo
. . 1 2 3 4 5 6 7 8 9
which was slightly lower than the VGG-16.
When it comes to the F; scores of CPSC-Extra for each  Fig. 6. Normalized confusion matrix of Deform-CNN.

model, the Deform-CNN performs well than other methods.

To be specific, the proposed method reaches the highest F; ]
score of 0.885, which is 0.070 higher than the second-ranked
method, Resnetl8 [19], which has an F; score of 0.815.
Compared with conventional CNN, our Deform-CNN has a
0.087 improvement. Besides, the F; scores of Normal, AF,
I-AVB, RBBB, and PAC are higher than others.

We also list the accuracy and x coefficients for each
network in Table IV, and our proposed network has the
highest x coefficient and accuracy in both CPSC-2018 and
CPSC-Extra compared to other methods. In detail, the accu-
racy of Deform-CNN in CPSC-2018 is 0.863. Compared
with the second-ranked VGG-16 [20], conventional CNN, 0 s s
and Mostayed et al. [29] in the last place, our Deform-CNN 0 02 Fa?é: Posmveolfate 08 1
has 0.05, 0.062, and 0.095 improvements, respectively.

In CPSC-Extra, our method reaches the highest accuracy
of 0.897, the increment is between 0.065 and 0.127 compare

0.8 7

o
[}
.

0.4} 1

True Positive Rate

o
o
.

ROC_micro (AUC=0.9743)
ROC_macro (AUC=0.9687)

Fig. 7. ROC curve of Deform-CNN.

with other methods, and the average increase amounted to
0.085. The x coefficients of Deform-CNN are 0.840 and
0.881 in CPSC-2018 and CPSC-Extra, respectively, which is
also higher than others. The proposed method without complex
preprocessing can obtain high F; scores, x coefficients, and

accuracy on two different data sets. Our method has good
performance and generalization ability.

Also, we present the confusion matrix, receiver operating
characteristic (ROC) curve, and the area under curve (AUC)
for Deformable-CNN in Figs. 6 and 7, respectively. It can
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TABLE V
COMPUTATIONAL COMPLEXITY OF THE VALIDATED STRUCTURE

LSTM [16] VGG-16 [20] Resnet-18 [19] Resnet-50 [19] Mostayed et al. [29] Liu et al. [30] Conventional CNN Deform-CNN

Method
Training Time(s/epoch) 368 347 48 91
Testing Time(s/epoch) 20 26 5 7
Parameters(M) 0.203 134.296 11.175 23.530
Flops(G) 1.579 95.481 4.849 10.854
Accuracy 0.773 0.813 0.798 0.779

341 12 13 50
27 <1 <1 3
0.327 7.190 2.025 1.375
2.537 1.551 0.803 0.825
0.768 0.797 0.801 0.863

be seen from the confusion matrix that Deform-CNN has a
good classification for almost nine types of ECG. The ROC
curve refers to the line of points obtained from the network
output at different classification criteria with FP and TP as the
axis coordinates. It can be a good reflection of the classifica-
tion performance of the network structure itself. Since both
micro-AUC and macro-AUC from the ROC curve are greater
than 95%, it can be concluded that Deform-CNN has
an excellent performance in classifying different cardiac
diseases.

E. Analysis of the Complexity

In ECG diagnosis tasks, the immediacy of diagnosis and the
number of parameters is also important criteria for judging
the goodness of the network structure. Therefore, we give
the training/testing time and the number of parameters for
Deform-CNN and the validated structure.

Results are recorded in Table V. We can see from Table V
that the complexity of Deform-CNN in time scale (training
time and testing time) is higher than that of Conventional
CNN and Liu et al. [30]; it has a clear advantage over the rest
of the other validated methods. The number of parameters is
lower than other validated methods due to the large number
of conventional 1 x 3 convolutions in Deform-CNN; the
same applies to Flops. Remarkably, deformable convolutional
layers require more parameters and computation time than
conventional convolutional layers. However, from the exper-
imental results, the increase in parameters and computation
time is not significant, and that of the specific network can be
even reduced by combining the deformable convolution with
simpler modules.

V. ANTINOISE PERFORMANCE
A. Noisy Data Construction

Noise is one of the major problems when recording the
signal. The existing methods are more or less disadvantageous
and difficult to meet end-to-end requirements [31], [32].
Instead of separating the filter from the neural network, it is
better to find a neural network structure with better noise
immunity and to fuse a simple filter to achieve better results.

Simulation experiments are needed to test and evaluate
the performance of the denoising approach. We need to
produce the noise before the simulation. However, it is not a
time-consuming choice if we include other relative algorithms
in order to assess the author’s method objectively. Thus,
we choose the method used in the breakthrough work of

Donoho [33] and Donoho and Johnstone [34] in the field of
wavelet denoising technique.

The approach used by Donoho to make the noisy sig-
nal assumes all noise as additive noise. The noises were
generated through a bandpass Chebyshev type II filter in
the corresponding noise frequency range according to the
corresponding SNR. The “clean” signal is normalized by the
standard deviation, multiplied by square-root SNR (SQRT-
SNR). Then, the noisy signal with the prespecified SQRT-SNR
is the normalized signal plus processed Gaussian noise. The
method is widely adopted by many researchers and became a
standard function of the wavelet toolbox in MATLAB.

We set f’, A, and f to denote the “clean” signal, the additive
Gaussian noise with variance o> = 1, and the noisy signal,
respectively. N is set to be the length of f/, STD(f’) is
the standard variation of “clean” signal, and SNR is the
prespecified SQRT-SNR.

Thus, the formula for the noisy signal is constructed as
follows:

1
N 2

STD(f) = | =7 2L O = FT (17
i=1
SNR )

B. Robustness of Deform-CNN Against Powerline Frequency
Interference

The powerline frequency noise is caused by the interference
of the capacitance and electrode lead loop in the human
body by the magnetic field and so on [35], resulting in a
50-60-Hz sinusoidal signal and its various harmonics. Because
there are a large number of small changes in the ECG
signal, the presence of powerline frequency noise will mask
these small changes, making the SNR of the ECG signal
decrease [36], thus affecting the judgment of the heart disease,
according to different circumstances and its amplitude. This
is roughly equivalent to 5%—-40% of the R-wave amplitude.
Fig. 8 illustrates the effect of powerline frequency interference
on the ECG signal.

This part of the experiment is divided into two parts.
The first is a comparison of the recognition accuracy of
the Deform-CNN with other seven outstanding deep learning
algorithms for normal data and noisy data. The second is
the test between Deform-CNN and some of the previously
proposed structures to investigate the effect of the deformable
convolutional module on noise immunity.
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Fig. 8.
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Illustration of the effect of powerline frequency interference on ECG

TABLE VI

COMPARISON OF DIAGNOSTIC ACCURACY AFTER POWERLINE
FREQUENCY INTERFERENCE

Method Original Data Noisy Data

LSTM [16] 0.773 0.772
VGG-16 [20] 0.813 0.788
Resnet-18 [19] 0.798 0.762
Resnet-50 [19] 0.779 0.749
Mostayed et al. [29] 0.768 0.766
Liu et al. [30] 0.797 0.790
Conventional CNN 0.801 0.782
Deform-CNN 0.863 0.853

The following experimental data are presented in Table VI
for comparison with Deform-CNN using seven types of other
deep learning structures. Table VI gives the accuracy of ECG
diagnosis for each neural network.

Conventional CNN is used here to represent a Deform-CNN
in which the deformable convolution is completely replaced
by conventional convolution, the overall structure of which
is equivalent to a 12 layers 3 x 3 CNN. While LSTM [16]
is a structure with two recurrent layers, each containing
100 recurrent cells in which the recurrent cells are bidirectional
LSTM cells.

As can be seen from Table VI, both conventional CNN,
Resnet, and VGG have a relatively significant performance
degradation, with an average decrease in diagnosis accu-
racy of 2%-3%, which means that VGG and Resnet cannot
improve the poor noise immunity of baseline drift. However,
the diagnosis performance of Deform-CNN was only reduced
by 1%, indicating that the deformable convolution can help
CNN to effectively reduce the impact of powerline frequency
interference. LSTM was hardly affected by the noise and the
diagnosis accuracy rate dropped by only 0.1%. The structures
of Mostayed et al. [29] and Liu et al. [30] also have strong
noise immunity with 0.7% and 0.2% decreases in the correct
diagnostic rate, respectively. However, because of their low
diagnosis accuracy of the original data, the lower performance
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C1D1

C2D1

C3D1

3 sublayers 4 sublayers 5 sublayers
Fig. 9. Noise immunity of different structures to powerline frequency
interference.

degradation does not result in a good diagnostic accuracy of
noisy data.

To investigate the relationship between the structure and
its noise immunity, we used structures in Section IV-C for
this experiment. Noise immunity was used to characterize the
performance of different structures facing noise. For ease of
viewing the results, a color shade has been used to represent
how much of this is accounted for; the higher the percentage,
the darker the color. The result was shown in Fig. 9.

As can be seen from Fig. 9, the overall noise immunity
of all structures is high, with a noise immunity of almost
0.98 or higher, indicating that the inclusion of deformable
convolution can effectively suppress the powerline frequency
interference. In general, noise immunity increases with the
number of sublayers and increases slightly with the number
of conventional convolution layers in sublayers. The shallow
layers of the neural network are susceptible to this because
of the higher frequency of such noise [37]. As the number
of layers increases and the receptive field of the neural
network expands, the effect of such high-frequency noise is
reduced. This process can be accelerated by adding deformable
convolution due to its large receptive field. Noise immunity
can be improved by the changes of sublayer structures, while
it can be better improved by an increase in the number of
sublayers.

C. Robustness of Deform-CNN Against Baseline Drift

In the original signal acquisition, the original ECG signal
drift amplitude reaches 0.1-0.2 times of the maximum ampli-
tude due to the low-frequency noise caused by the interference
of signal recording and electronic equipment or respiratory
interference and motion artifacts [38], which has the greatest
impact on the ECG signal. The ECG signal disturbed by such
noise becomes distorted and jitters up and down; thus, it is
difficult to determine the position of signal feature points.
Its frequency range is generally set at 0.15-0.3 Hz, and the
amplitude is set at about 15 of the maximum amplitude. Fig. 10
illustrates the effect of baseline drift on the ECG signal.

This experiment can also be divided into two parts.
Table VII compared the performance of Deform-CNN with
seven other deep learning algorithms, giving their recognition
accuracy for both normal and noisy data.
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Fig. 10. Illustration of the effect of baseline drift on ECG signals.

TABLE VII
COMPARISON OF DIAGNOSTIC ACCURACY AFTER BASELINE DRIFT

Method Original Data Noisy Data

LSTM [16] 0.773 0.671
VGG-16 [20] 0.813 0.673
Resnet-18 [19] 0.798 0.688
Resnet-50 [19] 0.779 0.612
Mostayed et al. [29] 0.768 0.671
Liu et al. [30] 0.797 0.751
Conventional CNN 0.801 0.628
Deform-CNN 0.863 0.813

C1D1

C2D1

C3D1 0.6508

3 sublayers

4 sublayers 5 sublayers

Fig. 11. Noise immunity of different structures to baseline drift.

As can be seen from Table VII, the baseline drift had
a large impact on the experimental results. Average perfor-
mance degradation is up to 10% to 20%. In comparison,
the Deform-CNN’s noise immunity decreased by only 5%,
indicating that the Deform-CNN is effective against such
noise. The remaining structures in the experiment have a large
performance degradation except for the structure proposed by
Liu et al. [30] with only a small decrease by 4.6%.

As shown in Fig. 11, noise immunity of structures is lower
dealing with the data after baseline drifts except for 4-C,D;.
Thus, 4-C,D;, with the noise immunity of 0.9391, has some
superiority in this aspect. The overall trend roughly shows
that the noise immunity decreases as the number of conven-

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

04- lllusion of original ECG and noisy data.

ECG data
0.3 EMG interference

02

ot i “\
AN
(i VATAY A/

e
i

0 20 40 60 80 100 120 140 160 180 200

04r After EMG interference.

Noisy data

20 40 60 80 100 120 140 160 180 200

Fig. 12.  Illustration of the effect of EMG interference on ECG signals.

tional convolution layers in the sublayers increases except for
4-C,D;. Since the baseline drift is a type of low-frequency
noise with a large amplitude, it is difficult to filter out this type
of low-frequency information in the small receptive fields and
can even lead to more severe distortion of the original data.
Although the deformable convolution has a large receptive
field, the data distortion caused by the sublayer interferes with
the data acquisition of the deformable convolution because
the deformable convolution is located after the conventional
convolution in the sublayer and has few sampling points. This
results in a decrease in noise immunity as the number of
sublayers and the number of conventional convolution layers
in the sublayers increase. Also, due to the deformable convolu-
tion with few sample points, the structure of the neural network
designed in some way will not significantly be affected by the
data distortion caused by conventional convolution, but rather
the baseline drift is better filtered out by the large receptive
fields of deformable convolution.

D. Robustness of Deform-CNN Against Electromyography
Interference

Electromyography (EMG) interference is due to the diver-
sity of signals in the human body [39]. Some biomass is a
signal in one case and noise in another case. The bioelectrical
signals caused by the contraction of numerous muscle fibers
are intermingled, and the noise is formed by the action of ECG
electrodes. It is mainly due to the trembling of muscle fibers,
resulting in changes in body surface potential. The potential
difference measured by electrode patches on the body surface
is affected, resulting in a short duration, which is the noise
of ECG producing tiny ripples. Due to its diverse sources,
this kind of noise is similar to white noise with no fixed
incidence, a wide range of frequency distribution, relatively
more between 30 and 300 Hz, and the data generally remain
around 25 mV. Fig. 12 illustrates the effect of electromyogra-
phy interference on the ECG signal.

This experiment consists of three parts. Table VIII gives
the accuracy of different structures for normal and noisy
data. Fig. 13 verifies whether a Gaussian filter can effectively
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TABLE VIII
COMPARISON OF DIAGNOSTIC ACCURACY AFTER EMG INTERFERENCE

Method Original Data Noisy Data
LSTM [16] 0.773 0.766
VGG-16 [20] 0.813 0.678
Resnet-18 [19] 0.798 0.611
Resnet-50 [19] 0.779 0.608
Mostayed et al. [29] 0.768 0.759
Liu et al. [30] 0.797 0.757
Conventional CNN 0.801 0.644

Deform-CNN 0.863 0.660(0.828)

The number in brackets represents the recognition accuracy of Deform-
CNN after the noise addition data has been filtered by a Gaussian filter.
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Fig. 13. Classification accuracy of Deform-CNN for noisy data after different
Gaussian filters.

C1D1 0.5219
C2D1 0.6722
C3D1 0.6946
3 sublayers 4 sublayers 5 sublayers

Fig. 14. Noise immunity of different structures to EMG interference.

improve the noise immunity of Deform-CNN to EMG noise.
Fig. 14 indicates the noise immunity of proposed structures in
Section IV-C.

Table VIII compared the performance of Deform-CNN with
seven other deep learning algorithms, giving their recognition
accuracy for both normal and noisy data.

It can be seen from Table VIII that the EMG noise has
a strong attack performance against all network structures
except for LSTM [16]. Considering the excellent performance
of LSTM [16] in EMG noise and powerline frequency inter-
ference, we will consider introducing the idea of LSTM [16]
in future work to improve the noise performance of networks.

2508313

Deform-CNN performance drop of almost 20% is the most
pronounced here. It is, therefore, necessary to investigate this
phenomenon.

In consideration of the weak defenses of Deform-CNN
against broadband high-frequency noise like EMG, we try
to use a low-pass filter to reduce such effects. Therefore,
an attempt was made to classify the noise-added data again
with Deform-CNN after passing it through a Gaussian filter.
We experimented with four different Gaussian filter sizes and
set up 50 sets of experiments from 0.1 to 5 with 0.1 as an
interval. The classification results are shown in Fig. 13.

From Fig. 13, a 1 x 7 Gaussian filter with a variance
of 0.400 can increase the accuracy to 82.8%. This greatly
improves its classification performance. Therefore, the use of
a filter largely reduces the impact of EMG on recognition
accuracy.

Fig. 14 gives a comparison of the noise immunity of
different structures against EMG.

When dealing with data adding EMG interference, all the
noise immunities are low, with few above 0.8. It can be
seen from Fig. 14 that the overall noise immunity increases
significantly with the number of sublayers and the number
of convolution layers in the sublayers. As the number of
sublayers increases, the change in noise immunity is more
pronounced. EMG interference is a class of the high-frequency
noise, such as powerline frequency interference, but it has a
much wider frequency range, which makes it more difficult
to filter out. The increase in deformable convolution and the
increase in the number of convolution layers can improve the
diagnosis accuracy of the data after noise addition, but it is
difficult to achieve high noise immunity.

VI. CONCLUSION

In this article, Deform-CNN was designed by introducing
deformable convolution in CNN, where we use CPSC-2018 as
the training set and obtain good classification results, which
means that Deform-CNN is better suited to ECG signal charac-
teristics and can perform ECG classification tasks effectively.
In ECG classification tasks, it is possible to combine data
features more efficiently than in other network structures,
achieving higher recognition accuracy with a smaller number
of parameters.

In ECG classification tasks, Deform-CNN can synthesize
feature data more efficiently than commonly used LSTM,
the attention module, and many other methods. It is based on
the periodicity of the ECG itself and the correlation of data
between leads, showing greater adaptability in ECG diagnosis.
Deform-CNN can also be made more robust by adding a
Gaussian filter. Compared with other structures, Deform-CNN
can effectively identify data containing all three ECG noise
types, so it has a much broader application potential.

Since Deform-CNN'’s input data do not require excessive
preprocess, it also has high accuracy in ECG diagnosis, low
overall network complexity, and high stability, which makes
end-to-end ECG diagnosis possible.

Deform-CNN has a good antinoise ability, but some noise
types can still lead to significant damage to the network’s
performance. The addition of filters can effectively improve
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this situation, but this is not sufficient for end-to-end require-
ments. In future work, we will explore in depth the relationship
between antinoise ability and the network structure and explore
deep learning-based ECG denoising algorithms and ECG
diagnostic framework with better antinoise performance.
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